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consider how to encode a conditional expression of the form: 

if P then A else B 

i.e., the value of the whole expression is either A or B, 

depending on the value of P 

this conditional expression can be represented by

using a lambda expression as follows

COND P A B

where COND, P, A and B are all lambda expressions. 

https://pages.cs.wisc.edu/~horwitz/CS704-NOTES/2.LAMBDA-CALCULUS-PART2.html#cond

Encoding Conditionals (1)
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COND P A B

COND is a function of 3 arguments 

that works by applying P to ( A and B )

(i.e., P itself chooses A or B):

    COND == λp.λa.λb.p a b 

  (where == means "is defined to be").

https://pages.cs.wisc.edu/~horwitz/CS704-NOTES/2.LAMBDA-CALCULUS-PART2.html#cond

Encoding Conditionals (2)
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To make this definition work correctly, 

we must define the representations of true and false carefully 

since the lambda expression P 

that COND applies to its arguments A and B 

will reduce to either TRUE or FALSE

when TRUE is applied to a and b we want it to return a (first)

when FALSE is applied to a and b we want it to return b. (second)

https://pages.cs.wisc.edu/~horwitz/CS704-NOTES/2.LAMBDA-CALCULUS-PART2.html#cond

Encoding Conditionals (3)
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let TRUE be a function of two arguments 

that ignores the second argument 

and returns the first argument, 

let FALSE be a function of two arguments 

that ignores the first argument 

and returns the second argument:

    TRUE == λx.λy.x

    FALSE == λx.λy.y 

https://pages.cs.wisc.edu/~horwitz/CS704-NOTES/2.LAMBDA-CALCULUS-PART2.html#cond

Encoding Conditionals (4)
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COND TRUE M N 

Note that this expression should evaluate to M. 

substituting our definitions for COND and TRUE, 

and evaluating the resulting expression

 

the sequence of beta-reductions is shown below

 

in each case, the redex about to be reduced is indicated 

by underlining the formal parameter and 

the argument that will be substituted in for that parameter. NO

https://pages.cs.wisc.edu/~horwitz/CS704-NOTES/2.LAMBDA-CALCULUS-PART2.html#cond

Encoding Conditionals (5)
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(λp.λa.λb. p a b) (λx.λy. x) M N →β

(λa.λb. (λx.λy.x) a b) M N →β

(λb. (λx.λy.x) M b) N →β

(λx.λy. x) M N →β

(λy. M) N →β

M 

https://pages.cs.wisc.edu/~horwitz/CS704-NOTES/2.LAMBDA-CALCULUS-PART2.html#cond

Encoding Conditionals (6)
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Division of natural numbers may be implemented by,

    n / m   =   if   n ≥ m   then     1 + ( n − m ) / m   

  else     0 

Calculating n – m takes many beta reductions. 

Unless doing the reduction by hand, 

this doesn't matter that much, 

but it is preferable to not have to do 

this calculation (n – m) twice. 

https://en.wikipedia.org/wiki/Church_encoding

Division (1-1)

9 / 3 = 1 + (9 – 3) / 3 

= 1 + (1 + (6 – 3) / 3)

 = 1 + (1 + (1 + 0 / 3))

= 1 + (1 +( 1 + 0))

  

n / m = if n ≥ m then 1 + (n – m) / m   

        else     0 

computing the condition (n ≥ m) 

involves (n – m) calculation 
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The simplest predicate for testing numbers is IsZero 

so consider the condition.

    IsZero (minus n m)

But this condition is equivalent to n ≤ m, not n < m. 

    minus n m  = m pred n = 0 if   n ≤ m

If this expression is used 

then the mathematical definition of division given above 

is translated into function on Church numerals as,

https://en.wikipedia.org/wiki/Church_encoding

Division (1-2)

minus m n = n pred m 

minus 4 3 = 3 pred 4 

= (pred (pred (pred 4))) 

= (pred (pred 3)) 

= (pred 2) 

= 1 

IsZero (minus 3 1) = 0 3 > 1    2

IsZero (minus 3 2) = 0 3 > 2    1

IsZero (minus 3 3) = 1 3 = 3    0

IsZero (minus 3 4) = 1 3 < 4    0

IsZero (minus 3 5) = 1 3 < 5    0
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    n / m   =   if   n ≥ m   then     1 + ( n − m ) / m   

     else     0 

    n / m   =   if   n < m   then     0   

     else     1 + ( n − m ) / m 

    (n-1)/m =   if   n ≤ m   then     0 

       else     1 + ( n − m ) / m   

If IsZero (minus n m) is used 

a single call to (minus n m) is possible 

but the result gives the value of (n-1) / m. 

https://en.wikipedia.org/wiki/Church_encoding

Division (2-1)

(minus n m) can be utilized 

in computing 1 + ( n − m ) / m

correct condition: n < m

modified condition: n ≤ m 
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    divide1 n m f x = 

(λd. IsZero d (0 f x) (f (divide1 d m f x))) (minus n m) d ← n – m

    IsZero d IsZero (minus n m) 

    TRUE  (λx.λy.x) (0 f x) (f (divide1 d m f x))

= (0 f x)

    FALSE (λx.λy.y) (0 f x) (f (divide1 d m f x))

= (f (divide1 d m f x))

    (n-1)/m =   if   n ≤ m   then     0 

       else     1 + ( n − m ) / m   

https://en.wikipedia.org/wiki/Church_encoding

Division (2-2)
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    divide1 n m f x = 

(λd. IsZero d (0 f x) (f (divide1 d m f x))) (minus n m) 

    divide1 9 3 f x 

= IsZero 6 (0 f x) (f (divide1 6 3 f x)) = (f (divide1 6 3 f x))

    divide1 6 3 f x 

= IsZero 3 (0 f x) (f (divide1 3 3 f x)) = (f (divide1 3 3 f x))

     divide1 3 3 f x 

= IsZero 0 (0 f x) (f (divide1 0 3 f x)) = (0 f x) = x 

    

https://en.wikipedia.org/wiki/Church_encoding

Division (2-3)

9 / 3 = 1 + (9 – 3) / 3 

= 1 + (1 + (6 – 3) / 3)

 = 1 + (1 + (1 + 0 / 3))

= 1 + (1 +( 1 + 0))

divide1 9 3 f x   

= (f (divide1 6 3 f x))

= (f (f (divide1 3 3 f x)))

= (f (f (0 f x)))

= (f (f x))
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add 1 to n before calling divide. 

    divide n = divide1 (succ n) 

    divide1 10 3 f x 

= IsZero 7 (0 f x) (f (divide1 7 3 f x)) = (f (divide1 7 3 f x))

    divide1 7 3 f x 

= IsZero 4 (0 f x) (f (divide1 4 3 f x)) = (f (divide1 4 3 f x))

     divide1 4 3 f x 

= IsZero 1 (0 f x) (f (divide1 1 3 f x)) = (f (divide1 1 3 f x))

     divide1 1 3 f x 

= IsZero 0 (0 f x) (f (divide1 1 3 f x)) = (0 f x) = x 

 

https://en.wikipedia.org/wiki/Church_encoding

Division (3-1)

divide1 9 3 f x   

= (f (divide1 7 3 f x))

= (f (f (divide1 4 3 f x)))

= (f (f (f (divide1 1 3 f x))))

= (f (f (f x)))
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add 1 to n before calling divide. 

    divide n = divide1 (succ n) 

divide1 is a recursive definition. 

    divide1 n m f x = 

(λd. IsZero d (0 f x) (f (divide1 d m f x))) (minus n m) 

 

https://en.wikipedia.org/wiki/Church_encoding

Division (3-2)
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The Y combinator may be used to implement the recursion. 

Create a new function called div by;

    In the left hand side divide1 → div c

    In the right hand side divide1 → c 

 

    divide1 n m f x = 

(λd. IsZero d (0 f x) (f (divide1 d m f x))) (minus n m) 

    div = λc. λn. λm. λf. λx. 

(λd. IsZero d (0 f x) (f (c d m f x))) (minus n m) 

    div c = λn. λm. λf. λx. 

(λd. IsZero d (0 f x) (f (c d m f x))) (minus n m) 

https://en.wikipedia.org/wiki/Church_encoding

Division (4)
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Then,

    divide = λn. divide1  (succ n)

where,

    divide1 = Y div succ = λn. λf. λx. f (n f x) Y 

= λf. (λx. F (x x)) (λx. f (x x)) 0 

= λf. λx. x IsZero 

= λn. N (λx. False) true 

    true ≡ λa. λb. a false ≡ λa. λb. b 

    minus = λm. λn. n pred m pred 

= λn. λf. λx. n (λg. λh. h (g f)) (λu. x) (λu. u ) 

https://en.wikipedia.org/wiki/Church_encoding

Division (5)
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Gives,

    divide = 

λn. ((λf. (λx. x x) (λx. f (x x))) 

       (λc. λn. λm. λf. λx. 

      (λd. (λn. n (λx. (λa. λb. b)) (λa. λb . a)) 

          d ((λf. λx. x) f x) (f (c d m f x)))   

    ((λm. λn. n (λn. λf. λx . n (λg. λh. h (g f)) 

         (λu. x) (λu. u)) m) n m)

       ))   

      ((λn. λf. λx. f (n f x)) n)

https://en.wikipedia.org/wiki/Church_encoding

Division (6)

Or as text, using \ for λ,

divide = 

(\n.((\f.(\x.x x) (\x.f (x x))) 

     (\c.\n.\m.\f.\x.

          (\d.(\n.n (\x.(\a.\b.b)) (\a.\b.a)) 

                    d ((\f.\x.x) f x) (f (c d m f x))) 

          ((\m.\n.n (\n.\f.\x.n (\g.\h.h (g f)) 

                                     (\u.x) (\u.u)) m) n m)

     )) 

     ((\n.\f.\x. f (n f x)) n))
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Gives,

divide = λn. ((λf. (λx. x x) (λx. f (x x))) (λc. λn. λm. λf. λx. (λd. (λn. n (λx. (λa. λb. b)) (λa. λb. 

a)) d ((λf. λx. x) f x) (f (c d m f x))) ((λm. λn. n (λn. λf. λx. n (λg. λh. h (g f)) (λu. x) (λu. u)) m) 

n m))) ((λn. λf. λx. f (n f x)) n)

Or as text, using \ for λ,

divide = (\n.((\f.(\x.x x) (\x.f (x x))) (\c.\n.\m.\f.\x.(\d.(\n.n (\x.(\a.\b.b)) (\a.\b.a)) d ((\f.\x.x) f x) (f 

(c d m f x))) ((\m.\n.n (\n.\f.\x.n (\g.\h.h (g f)) (\u.x) (\u.u)) m) n m))) ((\n.\f.\x. f (n f x)) n))

https://en.wikipedia.org/wiki/Church_encoding

Division (6)
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For example, 9/3 is represented by

divide (\f.\x.f (f (f (f (f (f (f (f (f x))))))))) (\f.\x.f (f (f x)))

Using a lambda calculus calculator, 

the above expression reduces to 3, using normal order.

(\f.\x.f (f (f (x))))

https://en.wikipedia.org/wiki/Church_encoding

Division (7)
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the definition of a function using the function itself.

A definition containing itself inside itself, by value, 

leads to the whole value being of infinite size. 

Other notations which support recursion natively overcome this 

by referring to the function definition by name. 

Lambda calculus cannot express this: 

all functions are anonymous in lambda calculus, 

so we can't refer by name to a value which is yet to be defined, 

inside the lambda term defining that same value. 

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (1-1)
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However, a lambda expression can receive itself 

as its own argument, for example in  (λx.x x) E. 

Here E should be an abstraction, 

applying its parameter to a value to express recursion.

Consider the factorial function F(n) recursively defined by

    F(n) = 1, if n = 0; else n × F(n − 1).

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (1-2)
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In the lambda expression which is to represent this function, 

a parameter (typically the first one) will be assumed 

to receive the lambda expression itself as its value, 

so that calling it – applying it to an argument – will amount to recursion. 

Thus to achieve recursion, the intended-as-self-referencing argument 

(called r here) must always be passed to itself within the function body, 

at a call point:

    G := λr. λn.(1, if n = 0; else n × (r r (n−1)))

            with  r r x = F x = G r x  to hold, so  r = G  and

    F := G G = (λx.x x) G

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (2-1)
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    F(n) = 1, if n = 0; else n × F(n − 1).

    G := λr. λn.(1, if n = 0; else n × (r r (n−1)))

            with  r r x = F x = G r x  to hold, so  r = G  and

    F := G G = (λx.x x) G

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (2-2)
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The self-application achieves replication here, 

passing the function's lambda expression 

on to the next invocation as an argument value, 

making it available to be referenced and called there.

This solves it but requires re-writing 

each recursive call as self-application. 

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (3-1)
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We would like to have a generic solution, 

without a need for any re-writes:

    G := λr. λn.(1, if n = 0; else n × (r (n−1)))

            with  r x = F x = G r x  to hold, so  r = G r =: FIX G  and

    F := FIX G  where  FIX g := (r where r = g r) = g (FIX g)

            so that  

FIX G = G (FIX G) = (λn.(1, if n = 0; else n × ((FIX G) (n−1))))

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (3-2)
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Given a lambda term with first argument 

representing recursive call (e.g. G here), 

the fixed-point combinator FIX will return 

a self-replicating lambda expression 

representing the recursive function (here, F). 

The function does not need to be 

explicitly passed to itself at any point, 

for the self-replication is arranged in advance, 

when it is created, to be done each time it is called. 

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (4)
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Thus the original lambda expression (FIX G) is 

re-created inside itself, at call-point, achieving self-reference.

In fact, there are many possible definitions for this FIX operator, 

the simplest of them being:

    Y := λg.(λx.g (x x)) (λx.g (x x))

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (5)
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In the lambda calculus, Y g  is a fixed-point of g, as it expands to:

    Y g

    (λh.(λx.h (x x)) (λx.h (x x))) g

    (λx.g (x x)) (λx.g (x x))

    g ((λx.g (x x)) (λx.g (x x)))

    g (Y g)

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (6)
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Now, to perform our recursive call to the factorial function, 

we would simply call (Y G) n,  where n is the number 

we are calculating the factorial of. 

Given n = 4, for example, this gives:

    (Y G) 4 

    G (Y G) 4 

    (λr.λn.(1, if n = 0; else n × (r (n−1)))) (Y G) 4

    (λn.(1, if n = 0; else n × ((Y G) (n−1)))) 4

    1, if 4 = 0; else 4 × ((Y G) (4−1))

    4 × (G (Y G) (4−1))

    

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (7)
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    4 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (4−1))

    4 × (1, if 3 = 0; else 3 × ((Y G) (3−1)))

    4 × (3 × (G (Y G) (3−1)))

    4 × (3 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (3−1)))

    4 × (3 × (1, if 2 = 0; else 2 × ((Y G) (2−1))))

    4 × (3 × (2 × (G (Y G) (2−1))))

    4 × (3 × (2 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (2−1))))

    4 × (3 × (2 × (1, if 1 = 0; else 1 × ((Y G) (1−1)))))

    4 × (3 × (2 × (1 × (G (Y G) (1−1)))))

    4 × (3 × (2 × (1 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (1−1)))))

    4 × (3 × (2 × (1 × (1, if 0 = 0; else 0 × ((Y G) (0−1))))))

    4 × (3 × (2 × (1 × (1))))

    24

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (8)
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Every recursively defined function can be seen 

as a fixed point of some suitably defined function 

closing over the recursive call with an extra argument, 

and therefore, using Y, every recursively defined function 

can be expressed as a lambda expression. 

In particular, we can now cleanly define the subtraction, multiplication 

and comparison predicate of natural numbers recursively.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (9)
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Every recursively defined function can be seen as a fixed point of some suitably defined function 

closing over the recursive call with an extra argument, and therefore, using Y, every recursively 

defined function can be expressed as a lambda expression. In particular, we can now cleanly 

define the subtraction, multiplication and comparison predicate of natural numbers recursively.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Fix-point combinator (1)
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Every recursively defined function can be seen as a fixed point of some suitably defined function 

closing over the recursive call with an extra argument, and therefore, using Y, every recursively 

defined function can be expressed as a lambda expression. In particular, we can now cleanly 

define the subtraction, multiplication and comparison predicate of natural numbers recursively.

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (1)
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In combinatory logic for computer science, a fixed-point combinator (or fixpoint combinator),[1]: 

p.26  denoted fix {\displaystyle {\textsf {fix}}}, is a higher-order function (which takes a function as 

argument) that returns some fixed point (a value that is mapped to itself) of its argument function, 

if one exists.

Formally, if the function f has one or more fixed points, then

    fix   f = f   ( fix   f )   , {\displaystyle {\textsf {fix}}\ f=f\ ({\textsf {fix}}\ f)\ ,}

and hence, by repeated application,

    fix   f = f   ( f   ( … f   ( fix   f ) … ) )   . {\displaystyle {\textsf {fix}}\ f=f\ (f\ (\ldots f\ ({\textsf {fix}}\ 

f)\ldots ))\ .}

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (2)
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In the classical untyped lambda calculus, every function has a fixed point.

A particular implementation of fix is Curry's paradoxical combinator Y, represented by

    Y = λ f .   ( λ x . f   ( x   x ) )   ( λ x . f   ( x   x ) )   . {\displaystyle {\textsf {Y}}=\lambda f.\ (\

lambda x.f\ (x\ x))\ (\lambda x.f\ (x\ x))\ .}[2]: 131 [note 1][note 2]

In functional programming, the Y combinator can be used to formally define recursive functions in 

a programming language that does not support recursion.

This combinator may be used in implementing Curry's paradox. The heart of Curry's paradox is 

that untyped lambda calculus is unsound as a deductive system, and the Y combinator 

demonstrates this by allowing an anonymous expression to represent zero, or even many values. 

This is inconsistent in mathematical logic. 

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (3)
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Every recursively defined function can be seen as a fixed point of some suitably defined function 

closing over the recursive call with an extra argument, and therefore, using Y, every recursively 

defined function can be expressed as a lambda expression. In particular, we can now cleanly 

define the subtraction, multiplication and comparison predicate of natural numbers recursively.

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (4)
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Applied to a function with one variable, the Y combinator usually does not terminate. More 

interesting results are obtained by applying the Y combinator to functions of two or more 

variables. The additional variables may be used as a counter, or index. The resulting function 

behaves like a while or a for loop in an imperative language. 

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (5)
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Used in this way, the Y combinator implements simple recursion. In the lambda calculus, it is not 

possible to refer to the definition of a function inside its own body by name. Recursion though 

may be achieved by obtaining the same function passed in as an argument, and then using that 

argument to make the recursive call, instead of using the function's own name, as is done in 

languages which do support recursion natively. The Y combinator demonstrates this style of 

programming. 

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (6)
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An example implementation of Y combinator in two languages is presented below.

# Y Combinator in Python

Y=lambda f: (lambda x: f(x(x)))(lambda x: f(x(x)))

Y(Y)

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (7)
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