
1 Young Won Lim
1/11/24

Lambda Calculus - Recursions (8A)

2 Young Won Lim
1/11/24

 Copyright (c) 2023 - 2016 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Lambda Calculus (8A) –
Recursions

3 Young Won Lim
1/11/24

consider how to encode a conditional expression of the form:

if P then A else B

i.e., the value of the whole expression is either A or B,

depending on the value of P

this conditional expression can be represented by

using a lambda expression as follows

COND P A B

where COND, P, A and B are all lambda expressions.

https://pages.cs.wisc.edu/~horwitz/CS704-NOTES/2.LAMBDA-CALCULUS-PART2.html#cond

Encoding Conditionals (1)

Lambda Calculus (8A) –
Recursions

4 Young Won Lim
1/11/24

COND P A B

COND is a function of 3 arguments

that works by applying P to (A and B)

(i.e., P itself chooses A or B):

 COND == λp.λa.λb.p a b

 (where == means "is defined to be").

https://pages.cs.wisc.edu/~horwitz/CS704-NOTES/2.LAMBDA-CALCULUS-PART2.html#cond

Encoding Conditionals (2)

Lambda Calculus (8A) –
Recursions

5 Young Won Lim
1/11/24

To make this definition work correctly,

we must define the representations of true and false carefully

since the lambda expression P

that COND applies to its arguments A and B

will reduce to either TRUE or FALSE

when TRUE is applied to a and b we want it to return a (first)

when FALSE is applied to a and b we want it to return b. (second)

https://pages.cs.wisc.edu/~horwitz/CS704-NOTES/2.LAMBDA-CALCULUS-PART2.html#cond

Encoding Conditionals (3)

Lambda Calculus (8A) –
Recursions

6 Young Won Lim
1/11/24

let TRUE be a function of two arguments

that ignores the second argument

and returns the first argument,

let FALSE be a function of two arguments

that ignores the first argument

and returns the second argument:

 TRUE == λx.λy.x

 FALSE == λx.λy.y

https://pages.cs.wisc.edu/~horwitz/CS704-NOTES/2.LAMBDA-CALCULUS-PART2.html#cond

Encoding Conditionals (4)

Lambda Calculus (8A) –
Recursions

7 Young Won Lim
1/11/24

COND TRUE M N

Note that this expression should evaluate to M.

substituting our definitions for COND and TRUE,

and evaluating the resulting expression

the sequence of beta-reductions is shown below

in each case, the redex about to be reduced is indicated

by underlining the formal parameter and

the argument that will be substituted in for that parameter. NO

https://pages.cs.wisc.edu/~horwitz/CS704-NOTES/2.LAMBDA-CALCULUS-PART2.html#cond

Encoding Conditionals (5)

Lambda Calculus (8A) –
Recursions

8 Young Won Lim
1/11/24

(λp.λa.λb. p a b) (λx.λy. x) M N →β

(λa.λb. (λx.λy.x) a b) M N →β

(λb. (λx.λy.x) M b) N →β

(λx.λy. x) M N →β

(λy. M) N →β

M

https://pages.cs.wisc.edu/~horwitz/CS704-NOTES/2.LAMBDA-CALCULUS-PART2.html#cond

Encoding Conditionals (6)

Lambda Calculus (8A) –
Recursions

9 Young Won Lim
1/11/24

Division of natural numbers may be implemented by,

 n / m = if n ≥ m then 1 + (n − m) / m

 else 0

Calculating n – m takes many beta reductions.

Unless doing the reduction by hand,

this doesn't matter that much,

but it is preferable to not have to do

this calculation (n – m) twice.

https://en.wikipedia.org/wiki/Church_encoding

Division (1-1)

9 / 3 = 1 + (9 – 3) / 3

= 1 + (1 + (6 – 3) / 3)

 = 1 + (1 + (1 + 0 / 3))

= 1 + (1 +(1 + 0))

n / m = if n ≥ m then 1 + (n – m) / m

 else 0

computing the condition (n ≥ m)

involves (n – m) calculation

Lambda Calculus (8A) –
Recursions

10 Young Won Lim
1/11/24

The simplest predicate for testing numbers is IsZero

so consider the condition.

 IsZero (minus n m)

But this condition is equivalent to n ≤ m, not n < m.

 minus n m = m pred n = 0 if n ≤ m

If this expression is used

then the mathematical definition of division given above

is translated into function on Church numerals as,

https://en.wikipedia.org/wiki/Church_encoding

Division (1-2)

minus m n = n pred m

minus 4 3 = 3 pred 4

= (pred (pred (pred 4)))

= (pred (pred 3))

= (pred 2)

= 1

IsZero (minus 3 1) = 0 3 > 1 2

IsZero (minus 3 2) = 0 3 > 2 1

IsZero (minus 3 3) = 1 3 = 3 0

IsZero (minus 3 4) = 1 3 < 4 0

IsZero (minus 3 5) = 1 3 < 5 0

Lambda Calculus (8A) –
Recursions

11 Young Won Lim
1/11/24

 n / m = if n ≥ m then 1 + (n − m) / m

 else 0

 n / m = if n < m then 0

 else 1 + (n − m) / m

 (n-1)/m = if n ≤ m then 0

 else 1 + (n − m) / m

If IsZero (minus n m) is used

a single call to (minus n m) is possible

but the result gives the value of (n-1) / m.

https://en.wikipedia.org/wiki/Church_encoding

Division (2-1)

(minus n m) can be utilized

in computing 1 + (n − m) / m

correct condition: n < m

modified condition: n ≤ m

Lambda Calculus (8A) –
Recursions

12 Young Won Lim
1/11/24

 divide1 n m f x =

(λd. IsZero d (0 f x) (f (divide1 d m f x))) (minus n m) d ← n – m

 IsZero d IsZero (minus n m)

 TRUE (λx.λy.x) (0 f x) (f (divide1 d m f x))

= (0 f x)

 FALSE (λx.λy.y) (0 f x) (f (divide1 d m f x))

= (f (divide1 d m f x))

 (n-1)/m = if n ≤ m then 0

 else 1 + (n − m) / m

https://en.wikipedia.org/wiki/Church_encoding

Division (2-2)

Lambda Calculus (8A) –
Recursions

13 Young Won Lim
1/11/24

 divide1 n m f x =

(λd. IsZero d (0 f x) (f (divide1 d m f x))) (minus n m)

 divide1 9 3 f x

= IsZero 6 (0 f x) (f (divide1 6 3 f x)) = (f (divide1 6 3 f x))

 divide1 6 3 f x

= IsZero 3 (0 f x) (f (divide1 3 3 f x)) = (f (divide1 3 3 f x))

 divide1 3 3 f x

= IsZero 0 (0 f x) (f (divide1 0 3 f x)) = (0 f x) = x

https://en.wikipedia.org/wiki/Church_encoding

Division (2-3)

9 / 3 = 1 + (9 – 3) / 3

= 1 + (1 + (6 – 3) / 3)

 = 1 + (1 + (1 + 0 / 3))

= 1 + (1 +(1 + 0))

divide1 9 3 f x

= (f (divide1 6 3 f x))

= (f (f (divide1 3 3 f x)))

= (f (f (0 f x)))

= (f (f x))

Lambda Calculus (8A) –
Recursions

14 Young Won Lim
1/11/24

add 1 to n before calling divide.

 divide n = divide1 (succ n)

 divide1 10 3 f x

= IsZero 7 (0 f x) (f (divide1 7 3 f x)) = (f (divide1 7 3 f x))

 divide1 7 3 f x

= IsZero 4 (0 f x) (f (divide1 4 3 f x)) = (f (divide1 4 3 f x))

 divide1 4 3 f x

= IsZero 1 (0 f x) (f (divide1 1 3 f x)) = (f (divide1 1 3 f x))

 divide1 1 3 f x

= IsZero 0 (0 f x) (f (divide1 1 3 f x)) = (0 f x) = x

https://en.wikipedia.org/wiki/Church_encoding

Division (3-1)

divide1 9 3 f x

= (f (divide1 7 3 f x))

= (f (f (divide1 4 3 f x)))

= (f (f (f (divide1 1 3 f x))))

= (f (f (f x)))

Lambda Calculus (8A) –
Recursions

15 Young Won Lim
1/11/24

add 1 to n before calling divide.

 divide n = divide1 (succ n)

divide1 is a recursive definition.

 divide1 n m f x =

(λd. IsZero d (0 f x) (f (divide1 d m f x))) (minus n m)

https://en.wikipedia.org/wiki/Church_encoding

Division (3-2)

Lambda Calculus (8A) –
Recursions

16 Young Won Lim
1/11/24

The Y combinator may be used to implement the recursion.

Create a new function called div by;

 In the left hand side divide1 → div c

 In the right hand side divide1 → c

 divide1 n m f x =

(λd. IsZero d (0 f x) (f (divide1 d m f x))) (minus n m)

 div = λc. λn. λm. λf. λx.

(λd. IsZero d (0 f x) (f (c d m f x))) (minus n m)

 div c = λn. λm. λf. λx.

(λd. IsZero d (0 f x) (f (c d m f x))) (minus n m)

https://en.wikipedia.org/wiki/Church_encoding

Division (4)

Lambda Calculus (8A) –
Recursions

17 Young Won Lim
1/11/24

Then,

 divide = λn. divide1 (succ n)

where,

 divide1 = Y div succ = λn. λf. λx. f (n f x) Y

= λf. (λx. F (x x)) (λx. f (x x)) 0

= λf. λx. x IsZero

= λn. N (λx. False) true

 true ≡ λa. λb. a false ≡ λa. λb. b

 minus = λm. λn. n pred m pred

= λn. λf. λx. n (λg. λh. h (g f)) (λu. x) (λu. u)

https://en.wikipedia.org/wiki/Church_encoding

Division (5)

Lambda Calculus (8A) –
Recursions

18 Young Won Lim
1/11/24

Gives,

 divide =

λn. ((λf. (λx. x x) (λx. f (x x)))

 (λc. λn. λm. λf. λx.

 (λd. (λn. n (λx. (λa. λb. b)) (λa. λb . a))

 d ((λf. λx. x) f x) (f (c d m f x)))

 ((λm. λn. n (λn. λf. λx . n (λg. λh. h (g f))

 (λu. x) (λu. u)) m) n m)

))

 ((λn. λf. λx. f (n f x)) n)

https://en.wikipedia.org/wiki/Church_encoding

Division (6)

Or as text, using \ for λ,

divide =

(\n.((\f.(\x.x x) (\x.f (x x)))

 (\c.\n.\m.\f.\x.

 (\d.(\n.n (\x.(\a.\b.b)) (\a.\b.a))

 d ((\f.\x.x) f x) (f (c d m f x)))

 ((\m.\n.n (\n.\f.\x.n (\g.\h.h (g f))

 (\u.x) (\u.u)) m) n m)

))

 ((\n.\f.\x. f (n f x)) n))

Lambda Calculus (8A) –
Recursions

19 Young Won Lim
1/11/24

Gives,

divide = λn. ((λf. (λx. x x) (λx. f (x x))) (λc. λn. λm. λf. λx. (λd. (λn. n (λx. (λa. λb. b)) (λa. λb.

a)) d ((λf. λx. x) f x) (f (c d m f x))) ((λm. λn. n (λn. λf. λx. n (λg. λh. h (g f)) (λu. x) (λu. u)) m)

n m))) ((λn. λf. λx. f (n f x)) n)

Or as text, using \ for λ,

divide = (\n.((\f.(\x.x x) (\x.f (x x))) (\c.\n.\m.\f.\x.(\d.(\n.n (\x.(\a.\b.b)) (\a.\b.a)) d ((\f.\x.x) f x) (f

(c d m f x))) ((\m.\n.n (\n.\f.\x.n (\g.\h.h (g f)) (\u.x) (\u.u)) m) n m))) ((\n.\f.\x. f (n f x)) n))

https://en.wikipedia.org/wiki/Church_encoding

Division (6)

Lambda Calculus (8A) –
Recursions

20 Young Won Lim
1/11/24

For example, 9/3 is represented by

divide (\f.\x.f (f (f (f (f (f (f (f (f x))))))))) (\f.\x.f (f (f x)))

Using a lambda calculus calculator,

the above expression reduces to 3, using normal order.

(\f.\x.f (f (f (x))))

https://en.wikipedia.org/wiki/Church_encoding

Division (7)

Lambda Calculus (8A) –
Recursions

21 Young Won Lim
1/11/24

the definition of a function using the function itself.

A definition containing itself inside itself, by value,

leads to the whole value being of infinite size.

Other notations which support recursion natively overcome this

by referring to the function definition by name.

Lambda calculus cannot express this:

all functions are anonymous in lambda calculus,

so we can't refer by name to a value which is yet to be defined,

inside the lambda term defining that same value.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (1-1)

Lambda Calculus (8A) –
Recursions

22 Young Won Lim
1/11/24

However, a lambda expression can receive itself

as its own argument, for example in  (λx.x x) E.

Here E should be an abstraction,

applying its parameter to a value to express recursion.

Consider the factorial function F(n) recursively defined by

 F(n) = 1, if n = 0; else n × F(n − 1).

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (1-2)

Lambda Calculus (8A) –
Recursions

23 Young Won Lim
1/11/24

In the lambda expression which is to represent this function,

a parameter (typically the first one) will be assumed

to receive the lambda expression itself as its value,

so that calling it – applying it to an argument – will amount to recursion.

Thus to achieve recursion, the intended-as-self-referencing argument

(called r here) must always be passed to itself within the function body,

at a call point:

 G := λr. λn.(1, if n = 0; else n × (r r (n−1)))

 with  r r x = F x = G r x  to hold, so  r = G  and

 F := G G = (λx.x x) G

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (2-1)

Lambda Calculus (8A) –
Recursions

24 Young Won Lim
1/11/24

 F(n) = 1, if n = 0; else n × F(n − 1).

 G := λr. λn.(1, if n = 0; else n × (r r (n−1)))

 with  r r x = F x = G r x  to hold, so  r = G  and

 F := G G = (λx.x x) G

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (2-2)

Lambda Calculus (8A) –
Recursions

25 Young Won Lim
1/11/24

The self-application achieves replication here,

passing the function's lambda expression

on to the next invocation as an argument value,

making it available to be referenced and called there.

This solves it but requires re-writing

each recursive call as self-application.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (3-1)

Lambda Calculus (8A) –
Recursions

26 Young Won Lim
1/11/24

We would like to have a generic solution,

without a need for any re-writes:

 G := λr. λn.(1, if n = 0; else n × (r (n−1)))

 with  r x = F x = G r x  to hold, so  r = G r =: FIX G  and

 F := FIX G  where  FIX g := (r where r = g r) = g (FIX g)

 so that 

FIX G = G (FIX G) = (λn.(1, if n = 0; else n × ((FIX G) (n−1))))

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (3-2)

Lambda Calculus (8A) –
Recursions

27 Young Won Lim
1/11/24

Given a lambda term with first argument

representing recursive call (e.g. G here),

the fixed-point combinator FIX will return

a self-replicating lambda expression

representing the recursive function (here, F).

The function does not need to be

explicitly passed to itself at any point,

for the self-replication is arranged in advance,

when it is created, to be done each time it is called.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (4)

Lambda Calculus (8A) –
Recursions

28 Young Won Lim
1/11/24

Thus the original lambda expression (FIX G) is

re-created inside itself, at call-point, achieving self-reference.

In fact, there are many possible definitions for this FIX operator,

the simplest of them being:

 Y := λg.(λx.g (x x)) (λx.g (x x))

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (5)

Lambda Calculus (8A) –
Recursions

29 Young Won Lim
1/11/24

In the lambda calculus, Y g  is a fixed-point of g, as it expands to:

 Y g

 (λh.(λx.h (x x)) (λx.h (x x))) g

 (λx.g (x x)) (λx.g (x x))

 g ((λx.g (x x)) (λx.g (x x)))

 g (Y g)

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (6)

Lambda Calculus (8A) –
Recursions

30 Young Won Lim
1/11/24

Now, to perform our recursive call to the factorial function,

we would simply call (Y G) n, where n is the number

we are calculating the factorial of.

Given n = 4, for example, this gives:

 (Y G) 4

 G (Y G) 4

 (λr.λn.(1, if n = 0; else n × (r (n−1)))) (Y G) 4

 (λn.(1, if n = 0; else n × ((Y G) (n−1)))) 4

 1, if 4 = 0; else 4 × ((Y G) (4−1))

 4 × (G (Y G) (4−1))

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (7)

Lambda Calculus (8A) –
Recursions

31 Young Won Lim
1/11/24

 4 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (4−1))

 4 × (1, if 3 = 0; else 3 × ((Y G) (3−1)))

 4 × (3 × (G (Y G) (3−1)))

 4 × (3 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (3−1)))

 4 × (3 × (1, if 2 = 0; else 2 × ((Y G) (2−1))))

 4 × (3 × (2 × (G (Y G) (2−1))))

 4 × (3 × (2 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (2−1))))

 4 × (3 × (2 × (1, if 1 = 0; else 1 × ((Y G) (1−1)))))

 4 × (3 × (2 × (1 × (G (Y G) (1−1)))))

 4 × (3 × (2 × (1 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (1−1)))))

 4 × (3 × (2 × (1 × (1, if 0 = 0; else 0 × ((Y G) (0−1))))))

 4 × (3 × (2 × (1 × (1))))

 24

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (8)

Lambda Calculus (8A) –
Recursions

32 Young Won Lim
1/11/24

Every recursively defined function can be seen

as a fixed point of some suitably defined function

closing over the recursive call with an extra argument,

and therefore, using Y, every recursively defined function

can be expressed as a lambda expression.

In particular, we can now cleanly define the subtraction, multiplication

and comparison predicate of natural numbers recursively.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Recursion (9)

Lambda Calculus (8A) –
Recursions

33 Young Won Lim
1/11/24

Every recursively defined function can be seen as a fixed point of some suitably defined function

closing over the recursive call with an extra argument, and therefore, using Y, every recursively

defined function can be expressed as a lambda expression. In particular, we can now cleanly

define the subtraction, multiplication and comparison predicate of natural numbers recursively.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Fix-point combinator (1)

Lambda Calculus (8A) –
Recursions

34 Young Won Lim
1/11/24

Every recursively defined function can be seen as a fixed point of some suitably defined function

closing over the recursive call with an extra argument, and therefore, using Y, every recursively

defined function can be expressed as a lambda expression. In particular, we can now cleanly

define the subtraction, multiplication and comparison predicate of natural numbers recursively.

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (1)

Lambda Calculus (8A) –
Recursions

35 Young Won Lim
1/11/24

In combinatory logic for computer science, a fixed-point combinator (or fixpoint combinator),[1]: 

p.26  denoted fix {\displaystyle {\textsf {fix}}}, is a higher-order function (which takes a function as

argument) that returns some fixed point (a value that is mapped to itself) of its argument function,

if one exists.

Formally, if the function f has one or more fixed points, then

 fix f = f (fix f) , {\displaystyle {\textsf {fix}}\ f=f\ ({\textsf {fix}}\ f)\ ,}

and hence, by repeated application,

 fix f = f (f (… f (fix f) …)) . {\displaystyle {\textsf {fix}}\ f=f\ (f\ (\ldots f\ ({\textsf {fix}}\

f)\ldots))\ .}

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (2)

Lambda Calculus (8A) –
Recursions

36 Young Won Lim
1/11/24

In the classical untyped lambda calculus, every function has a fixed point.

A particular implementation of fix is Curry's paradoxical combinator Y, represented by

 Y = λ f . (λ x . f (x x)) (λ x . f (x x)) . {\displaystyle {\textsf {Y}}=\lambda f.\ (\

lambda x.f\ (x\ x))\ (\lambda x.f\ (x\ x))\ .}[2]: 131 [note 1][note 2]

In functional programming, the Y combinator can be used to formally define recursive functions in

a programming language that does not support recursion.

This combinator may be used in implementing Curry's paradox. The heart of Curry's paradox is

that untyped lambda calculus is unsound as a deductive system, and the Y combinator

demonstrates this by allowing an anonymous expression to represent zero, or even many values.

This is inconsistent in mathematical logic.

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (3)

Lambda Calculus (8A) –
Recursions

37 Young Won Lim
1/11/24

Every recursively defined function can be seen as a fixed point of some suitably defined function

closing over the recursive call with an extra argument, and therefore, using Y, every recursively

defined function can be expressed as a lambda expression. In particular, we can now cleanly

define the subtraction, multiplication and comparison predicate of natural numbers recursively.

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (4)

Lambda Calculus (8A) –
Recursions

38 Young Won Lim
1/11/24

Applied to a function with one variable, the Y combinator usually does not terminate. More

interesting results are obtained by applying the Y combinator to functions of two or more

variables. The additional variables may be used as a counter, or index. The resulting function

behaves like a while or a for loop in an imperative language.

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (5)

Lambda Calculus (8A) –
Recursions

39 Young Won Lim
1/11/24

Used in this way, the Y combinator implements simple recursion. In the lambda calculus, it is not

possible to refer to the definition of a function inside its own body by name. Recursion though

may be achieved by obtaining the same function passed in as an argument, and then using that

argument to make the recursive call, instead of using the function's own name, as is done in

languages which do support recursion natively. The Y combinator demonstrates this style of

programming.

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (6)

Lambda Calculus (8A) –
Recursions

40 Young Won Lim
1/11/24

An example implementation of Y combinator in two languages is presented below.

Y Combinator in Python

Y=lambda f: (lambda x: f(x(x)))(lambda x: f(x(x)))

Y(Y)

https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (7)

Lambda Calculus (8A) –
Recursions

41 Young Won Lim
1/11/24

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

