Steps of Action

- Research the neural correlates
- Design phenomenal simulations
- Design Java version of simulations
- Build Organic Simulations/BBDs
- Design Integration Models
- Design Representational Languages
Steps of Action -2

- Determine functional role of memory areas
- Design Value-Function Language
- Design High Integration Models
- Design Cognitive Architecture
- Design Meta-Cognitive Control center
- Design AM Language compiler
- Design Intentional Virtual Machine
- Design Volitional Virtual Machine
Research Neural Correlates

- Research correlates of Memory
- Research correlates of Attention
- Research correlates of Intention
- Research correlates of Volition
- Research correlates of Consciousness
Design Phenomenal Simulations

- Design Neural and Neural Network Simulations
- Design group and heterogeneous Group Simulations
- Design Organ Level Simulations
- Design Integrated Simulations
- Design Highly Integrated Simulations
Design Java Simulations

- Design Java Neuron
- Design Java Networks
- Design Java Group and Heterogeneous Groups
- Design Java Organ Level Simulation
- Design Java Integrated Simulations
- Design Java Highly Integrated Simulations
Design Organ Level BBDs

- Once the Java Simulations are built
 - Reprogram Organ Level Simulations in C Variants
 - Begin evaluation/redesign strategy
 - Begin to design specifications for end Variation
 - Evaluate variations to determine best variation
 - Finalize specifications.
Once the Design of Integrated Models are completed in Java

- Reprogram integrated model in C Variants
- Begin evaluation/redesign cycle
- Begin to design specifications for end variant
- Evaluate variations to select best variation
- Finalize Specifications
Design Representational Languages

- Design Implicit Functional Cluster Quale
- Design Explicit Clump
- Design Explicit Symbolic Language
- Design Declarative Quale
- Design Sequencing Language
- Design Skill Memory Quale
Determine Functional Role of Memory Areas

- Map out Primary Sensory Perception areas
- Map out Secondary Sensory Perception Areas
- Map out Functional Modules
- Determine Functional Roles of Modules
- Confirm Functional Roles via fMRI
Design Value-Function Language

- Convert Functions to explicit clumps
- Create Symbolic Links to each clump
- Devise Functional Code to select a specific function
- Devise a similar code to select value clumps
- Implement Complicit term generators
Design Highly Integrated Model

- Bring together Organ Integrations, with languages proposed to form Highly Integrated Model
 - Reprogram into a C Variant Language
 - Start evaluation/redesign cycle
 - Start working towards specifying end Model
 - Evaluate Variations to determine best variation
 - Design Final Specification
Design Cognitive Architecture

- Rework Highly Integrated Design to allow outside Interface.
 - Analyze operation of highly Integrated Design
 - Determine requirements for Meta-cognitive system
 - Reprogram Simulation to include interface for regulation of operation
 - Reprogram Simulation for outside generation of programs and link for Virtual Machines
Design Metacognitive Control Center

- From Models, determine sane system parameters
- Implement management and control set point interface to regulatory system.
- Set up sane set points for Defaults in regulation storage area
Design AM Language Compiler

- Design an interface to the SMA that lets us insert preformed macros into the macro-list and extract new macros as they are formed.
- Create a meta-heuristic interface to the SMA macro-list that lets us search for the best fit macro.
- Create an evaluation mechanism that determines the quality factor of macros.
- Create a genetic algorithm that combines macros to get new macros.
Design AM Language -2

- Create Compiler that optimizes new macros
- Create rewind capability based on tailing a log
- Create feedback mechanism that includes information on how well the macro worked in its evaluation
- Create variation of Metaheuristic search that makes previous versions of the macro taboo when searching for rewind version.
Design Intention Virtual Machine

- Design random impulse interface
- Link to it, Biases and regulatory center
- Set up outcomes evaluation
- Set up outcomes Rule-Base
- Link to it biased random impulse interface to make options generator
- Use outcomes evaluation to select options rule
- Use AM Language Interface to execute option
Design Volition Virtual Machine

- Feedback operation of Intention Virtual Machine to outcomes evaluation section.
- Create Meta-Outcomes Evaluation section
- Create second-order Macros from sequences of macros
- Create a Meta-Heuristic search to find second-order macros
- Use intention to select from multiple meta-outcomes
Use AM Language to execute second order macros
Feedback outcomes of operation of AM Language to outcome evaluations to indicate success of second order macros.