The GreySmith Virtual Architecture

GreySmith Institute of Advanced Studies

Steps of Action

- Research the neural correlates
- Design phenomenal simulations
- Design Java version of simulations
- Build Organic Simulations/BBDs
- Design Integration Models
- Design Representational Languages

Steps of Action -2

- Determine functional role of memory areas
- Design Value-Function Language
- Design High Integration Models
- Design Cognitive Architecture
- Design Meta-Cognitive Control center
- Design AM Language compiler
- Design Intentional Virtual Machine
- Design Volitional Virtual Machine

Research Neural Correlates

- Research correlates of Memory
- Research correlates of Attention
- Research correlates of Intention
- Research correlates of Volition
- Research correlates of Consciousness

Design Phenomenal Simulations

Design Neural and Neural Network Simulations
Design group and heterogeneous Group Simulations
Design Organ Level Simulations
Design Integrated Simulations
Design Highly Integrated Simulations

Design Java Simulations

- Design Java Neuron
- Design Java Networks
- Design Java Group and Heterogeneous Groups
- Design Java Organ Level Simulation
- Design Java Integrated Simulations
- Design Java Highly Integrated Simulations

Design Organ Level BBDs

- Once the Java Simulations are built
 - Reprogram Organ Level Simulations in C Variants
 - Begin evaluation/redesign strategy
 - Begin to design specifications for end Variation
 - Evaluate variations to determine best variation
 - Finalize specifications.

Design Integrated Models

- Once the Design of Integrated Models are completed in Java
 - Reprogram integrated model in C Variants
 - Begin evaluation/redesign cycle
 - Begin to design specifications for end variant
 - Evaluate variations to select best variation
 - Finalize Specifications

Design Representational Languages

- Design Implicit Functional Cluster Quale
- Design Explicit Clump
- Design Explicit Symbolic Language
- Design Declarative Quale
- Design Sequencing Language
- Design Skill Memory Quale

Determine Functional Role of Memory Areas

- Map out Primary Sensory Perception areas
- Map out Secondary Sensory Perception Areas
- Map out Functional Modules
- Determine Functional Roles of Modules
- Confirm Functional Roles via fMRI

Design Value-Function Language

Convert Functions to explicit clumps
Create Symbolic Links to each clump
Devise Functional Code to select a specific function
Devise a similar code to select value clumps
Implement Complicit term generators

Design Highly Integrated Model

- Bring together Organ Integrations, with languages proposed to form Highly Integrated Model
 - Reprogram into a C Variant Language
 - Start evaluation/redesign cycle
 - Start working towards specifying end Model
 - Evaluate Variations to determine best variation
 - Design Final Specification

Design Cognitive Architecture

- Rework Highly Integrated Design to allow outside Interface.
 - Analyze operation of highly Integrated Design
 - Determine requirements for Meta-cognitive system
 - Reprogram Simulation to include interface for regulation of operation
 - Reprogram Simulation for outside generation of programs and link for Virtual Machines

Design Metacognitive Control Center

- From Models, determine sane system parameters
- Implement management and control set point interface to regulatory system.
- Set up sane set points for Defaults in regulation storage area

Design AM Language Compiler

- Design an interface to the SMA that lets us insert preformed macros into the macro-list and extract new macros as they are formed.
- Create a meta-heuristic interface to the SMA macrolist that lets us search for the best fit macro
- Create an evaluation mechanism that determines the quality factor of macros
- Create a genetic algorythm that combines macros to get new macros.

Design AM Language -2

- Create Compiler that optimizes new macros
- Create rewind capability based on tailing a log
- Create feedback mechanism that includes information on how well the macro worked in its evaluation
- Create variation of Metaheuristic search that makes previous versions of the macro taboo when searching for rewind version.

Design Intention Virtual Machine

- Design random impulse interface
- Link to it, Biases and regulatory center
- Set up outcomes evaluation
- Set up outcomes Rule-Base
- Link to it biased random impulse interface to make options generator
- Use outcomes evaluation to select options rule
- Use AM Language Interface to execute option

Design Volition Virtual Machine

- Feedback operation of Intention Virtual Machine to outcomes evaluation section.
- Create Meta-Outcomes Evaluation section
- Create second-order Macros from sequences of macros
- Create a Meta-Heuristic search to find second-order macros
- Use intention to select from multiple meta-outcomes

Design Volition Virtual Machine -2

- Use AM Language to execute second order macros
- Feedback outcomes of operation of AM Language to outcome evaluations to indicate success of second order macros.