
 Young Won Lim
10/22/19

Monad P2 : State Transformer Monads (1C)

 Young Won Lim
10/22/19

 Copyright (c) 2016 - 2019 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

State Transformer Monads
(1C)

3 Young Won Lim
10/22/19

Based on

Haskell in 5 steps

https://wiki.haskell.org/Haskell_in_5_steps

1. State Monad Control.Monad.State.Lazy

2. IO Monad System.IO

3. ST Monad Control.Monad.ST

State Transformer Monads
(1C)

4 Young Won Lim
10/22/19

A State Transformer ST Example

in https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

a generic version of the State monad in Control.Monad.State.Lazy

a good example to learn State monad and general monads

do not be confused with monad transformers, StateT

and Control.Monad.ST (with reference variable STRef)

The ST monad in this example is similar to StateT monad

but is very different from the ST monad in Control.Monad.ST

State in Haskell, J. Launchbury, S. Pe Jones, 2016

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/state-lasc.pdf

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

A State Transformer

State Transformer Monads
(1C)

5 Young Won Lim
10/22/19

http://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-State-Lazy.html

State Monad

Control.Monad.State.Lazy

State Transformer Monads
(1C)

6 Young Won Lim
10/22/19

newtype State s a = State { runState :: s -> (a, s) }

instance Monad (State s) where

(>>=) :: State s a -> (a -> State s b) -> State s b

p >>= k = q where

 p' = runState p -- p' :: s -> (a, s)

 k' = runState . k -- k' :: a -> s -> (b, s)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

State Monad State Monad

State Transformer Monads
(1C)

7 Young Won Lim
10/22/19

State Monad :

● a simple wrapper type

● usually defined with newtype.

type : type synonyms for an existing type (no data constructor)

newtype : can make an instance

A single data constructor : State { runState :: s -> (s, a) }

A single field : { runState :: s -> (s, a) }

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

A Wrapper Type

newtype State s a = State { runState :: s -> (a, s) }

single-field record

a function wrapped

in a record syntax

State Monad

State Transformer Monads
(1C)

8 Young Won Lim
10/22/19

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Making a value – using the function “state”

state
(s -> (a, s)) State s a

runState
(s -> (a, s))State s a

in practices, State data constructor is not allowed to be accessed

Instead, the function state is provided

newtype State s a = State { runState :: s -> (a, s) }

let stst = state (\y -> (y, y+1)) a library function

● the accessor function runState is provided
Control.Monad.Trans.State
exports a state function

State Monad

State Transformer Monads
(1C)

9 Young Won Lim
10/22/19

Accessor Function runState

s (a, s)

 state processor

a

stst :: State s a

1) let stst = State { runState = (\y -> (y, y+1)) }

runState stst (\y -> (y, y+1)) -- no instance error

s

a s binding variable type

2) let stst = state (\y -> (y, y+1))

runState stst 1 (1, 2)

run State Processor (Function)

State Monad

State Transformer Monads
(1C)

10 Young Won Lim
10/22/19

Control.Monad.Trans.State

no State data constructor

instead the function “state”

state :: (s -> (a, s)) -> State s a

Control.Monad.State

different implements of the State

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

The “state” function

state
(s -> (a, s)) State s a

state
State s a

s (a, s)

State Monad

State Transformer Monads
(1C)

11 Young Won Lim
10/22/19

State is a record with only one element,

whose type is a function (:: s -> (a, s))

runState converts a value of type State s a

to a function of this type (:: s -> (a, s))

runState :: State s a -> s -> (a, s)

apply runState to a value of the type State s a,

the return type is a function type s -> (a, s)

https://stackoverflow.com/questions/3240947/understanding-haskell-accessor-functions

runState function

newtype State s a = State { runState :: s -> (a, s) }

runState
(s -> (a, s))State s a

runState
State s a

s (a, s)

State Monad

State Transformer Monads
(1C)

12 Young Won Lim
10/22/19

instance Monad (State s) where

return :: a -> State s a

return x = state (\s -> (x, s))

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

return method

State s a

return
a State s a

state
State s a

s (a, s)

agiving a value (x) to return

results in a state processor function

which takes a state (s) and

returns it unchanged (s),

together with the value x

finally, the function is wrapped up by state.

return

State Monad

State Transformer Monads
(1C)

13 Young Won Lim
10/22/19

instance Monad (State s) where

(>>=) :: State s a -> (a -> State s b) -> State s b

p >>= k = q where

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Function type of >>=

p :: State s a

k :: (a -> State s b)

p >>= k

State s a -> (a -> State s b) -> State s b

p k

>>=p

 k

q

>>=
State s a

(a -> State s b)

 State s b

State Monad

State Transformer Monads
(1C)

14 Young Won Lim
10/22/19

instance Monad (State s) where

(>>=) :: State s a -> (a -> State s b) -> State s b

p >>= k = q where

 p' = runState p -- p' :: s -> (a, s)

 k' = runState . k -- k' :: a -> s -> (b, s)

x :: a

k :: a -> State s b

k x :: State s b

r = k x :: State s b

runState r :: s -> (b, s)

runState p :: s -> (a, s)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Composite Function runState . k

k

runState p
 :: s -> (a, s)

runState r
 :: s -> (b, s) :: a -> State s b

runState . k
 :: a -> s -> (b, s)

(1) (2)

k

>>=aState s

a

b

b

State s

State s

p

r

x k x

State Monad

State Transformer Monads
(1C)

15 Young Won Lim
10/22/19

http://hackage.haskell.org/package/base-4.12.0.0/docs/System-IO.html

IO Monad

System.IO

State Transformer Monads
(1C)

16 Young Won Lim
10/22/19

A value of type IO a is a computation which,

when performed, does some I/O actions

before returning a value of type a.

IO is a monad, so IO actions can be combined

using either the do-notation or

the >> and >>= operations

from the Monad class.

http://hackage.haskell.org/package/base-4.12.0.0/docs/System-IO.html#g:1

IO Monad Value IO Monad

State Transformer Monads
(1C)

17 Young Won Lim
10/22/19

an action can be viewed as a function

● takes the current state of the world as its argument,

● produces a value and a modified world as its result,

the modified world reflects

any input/output performed by the action.

In reality, Haskell systems Hugs and GHC

implement actions in a more efficient manner,

but for the purposes of understanding

the behaviour of actions,

the above interpretation can be useful.

https://www.cs.hmc.edu/~adavidso/monads.pdf

An IO action and a function IO Monad

func :: RealWorld -> (a, RealWorld)

func
RealWorld (t, RealWorld)

State Transformer Monads
(1C)

18 Young Won Lim
10/22/19

There is really only one way to perform an I/O action:

bind an I/O action to Main.main in your program.

main = …

when your program is run, the I/O will be performed.

It is not possible to perform I/O from an arbitrary function,

unless that function is itself in the IO monad

and called at some point, directly or indirectly,

from Main.main.

Thread

http://hackage.haskell.org/package/base-4.12.0.0/docs/System-IO.html#g:1

Performing IO actions IO Monad

State Transformer Monads
(1C)

19 Young Won Lim
10/22/19

Recall that interactive programs in Haskell are written

using the type IO a of “actions” that return a result of type a,

but may also perform some input/output.

A number of primitives are provided

for building values of this type, including:

return :: a -> IO a

(>>=) :: IO a -> (a -> IO b) -> IO b

getChar :: IO Char

putChar :: Char -> IO ()

https://www.cs.hmc.edu/~adavidso/monads.pdf

Methods returing an IO monad value IO Monad

State Transformer Monads
(1C)

20 Young Won Lim
10/22/19

The use of return and >>= means that IO is monadic,

and hence that the do notation can be used

to write interactive programs.

For example, the action that reads a string of characters

from the keyboard can be defined as follows:

getLine :: IO String

getLine = do x <- getChar

 if x == '\n' then

 return []

 else

 do xs <- getLine

 return (x:xs)

https://www.cs.hmc.edu/~adavidso/monads.pdf

Do notation in interactive programs IO Monad

State Transformer Monads
(1C)

21 Young Won Lim
10/22/19

(>>=) :: IO a -> (a -> IO b) -> IO b

(>>) :: IO a -> IO b -> IO b

main = readFile "in-file" >>= \s ->

 writeFile "out-file" (filter isAscii s) >>

 putStr "Filtering successful\n"

https://www.haskell.org/onlinereport/haskell2010/haskellch7.html

Sequencing IO Operations – using >>= and >> IO Monad

State Transformer Monads
(1C)

22 Young Won Lim
10/22/19

main = do

 putStr "Input file: "

 ifile <- getLine

 putStr "Output file: "

 ofile <- getLine

 s <- readFile ifile

 writeFile ofile (filter isAscii s)

 putStr "Filtering successful\n"

https://www.haskell.org/onlinereport/haskell2010/haskellch7.html

Sequencing IO Operations – using do notation IO Monad

State Transformer Monads
(1C)

23 Young Won Lim
10/22/19

newtype IO a = IO (State# RealWorld -> (# State# RealWorld, a #))

instance Monad IO where

 return = returnIO

 (>>=) = bindIO

returnIO :: a -> IO a

returnIO x = IO $ \s -> (# s, x #)

bindIO :: IO a -> (a -> IO b) -> IO b

bindIO (IO m) k = IO $ \s -> case m s of (# new_s, a #) -> unIO (k a) new_s

http://blog.ezyang.com/2011/05/unraveling-the-mystery-of-the-io-monad/

IO Monad Definition Summary IO Monad

GHC.Types

System.IO

State Transformer Monads
(1C)

24 Young Won Lim
10/22/19

The IO type is just a newtype defined in GHC.Prim / GHC.Types:

newtype IO a = IO (State# RealWorld -> (# State# RealWorld, a #))

Look at a naive implementation of State monad:

newtype State s a = State (s -> (s, a))

State# RealWorld s

https://stackoverflow.com/questions/19093016/why-cant-i-use-io-constructor/19093720

IO Monad Type IO Monad

GHC.Types

State Transformer Monads
(1C)

25 Young Won Lim
10/22/19

newtype IO a = IO (State# RealWorld -> (# State# RealWorld, a #))

the argument of IO constructor

is not the same as the argument of return.

….

return = returnIO

..

returnIO :: a -> IO a

returnIO x = IO $ \ s -> (# s, x #)

State# RealWorld s

https://stackoverflow.com/questions/19093016/why-cant-i-use-io-constructor/19093720

IO Monad Type IO Monad

GHC.Types

State Transformer Monads
(1C)

26 Young Won Lim
10/22/19

IO is an abstract type:

it's an intentional decision not to export the constructor (IO)

so you can neither construct IO nor pattern match it.

This allows Haskell to enforce referential transparency

and other useful properties even in presence of input-output.

https://stackoverflow.com/questions/19093016/why-cant-i-use-io-constructor/19093720

Abstract IO Monad Type IO Monad

State Transformer Monads
(1C)

27 Young Won Lim
10/22/19

The RealWorld type is an abstract datatype,

so pure functions also can't construct

RealWorld values by themselves,

The RealWorld type is a strict type,

so undefined also can't be used.

newtype IO a = IO (State# RealWorld -> (# State# RealWorld, a #))

State# RealWorld (abstract type)

IO a (abstract type)

https://wiki.haskell.org/IO_inside#IO_actions_as_values

Abstract and strict type RealWorld

func

func w0 = (x, w1)

w0 (x, w1)

Executing an IO action

func :: RealWorld -> (a, RealWorld)

func
RealWorld (t, RealWorld)

State Transformer Monads
(1C)

28 Young Won Lim
10/22/19

s type with associated operations,

but whose representation is hidden.

Abstract data type examples:

● the built-in primitive types, Integer and Float.

● parametrized types : as a kind of abstract type,

because some parts of the data type is

undefined, or abstract.

the interface is the set of operations

that can be used to manipulate values of the data type.

does not manipulate the part of the data type that was left abstract.

https://wiki.haskell.org/IO_inside#IO_actions_as_values

Abstract data types

State Transformer Monads
(1C)

29 Young Won Lim
10/22/19

it is interesting to note that the IO monad can be viewed

as a special case of the State monad,

in which the internal state is a suitable representation

of the state of the world

 type World = ...

 type IO a = World -> (a, World)

https://www.cs.hmc.edu/~adavidso/monads.pdf

A special case of State monad IO Monad

State Transformer Monads
(1C)

30 Young Won Lim
10/22/19

instance Monad IO where

 return x w0 = (x, w0)

 (ioX >>= f) w0 =

 let (x, w1) = ioX w0

 in f x w1 -- has type (t, World)

 type IO t = World -> (t, World)

type synonym

https://www.cs.hmc.edu/~adavidso/monads.pdf

Generic definition IO Monad

State Transformer Monads
(1C)

31 Young Won Lim
10/22/19

IO t is a parameterized function type

input : a World

output: a result value of the type t and a new updated World

are obtained by modifying the given World

in the process of computing the result value of the type t.

 type IO t = World -> (t, World) type synonym

cf) type application

https://www.cs.hmc.edu/~adavidso/monads.pdf

Type Synonym IO t

World -> (t, World)

IO t

World (t, World)

World (t, World)

IO Monad

State Transformer Monads
(1C)

32 Young Won Lim
10/22/19

instance Monad IO where

 return x world = (x, world)

 (ioX >>= f) world0 =

 let

 (x, world1) = ioX world0

 in

 f x world1 -- Has type (t, World)

https://www.cs.hmc.edu/~adavidso/monads.pdf

(>>=) bind operator explained

ioX
World (t, World)

 f x w1

w0 (x, w1)

(ioX >>= f) :: IO a -> (a -> IO b) -> IO b

ioX :: IO a

f :: (a -> IO b)

ioX :: IO a f :: (a -> IO b)

ioY
World (t, World)
w1 (y, w1)

fx
t

IO Monad

State Transformer Monads
(1C)

33 Young Won Lim
10/22/19

The return function takes x

and gives back a function

that takes a World

and returns x along with the new, updated World

formed by not modifying the World it was given

.

https://www.cs.hmc.edu/~adavidso/monads.pdf

return method

 return x world = (x, world)

returnx

World (x, World)

IO Monad

State Transformer Monads
(1C)

34 Young Won Lim
10/22/19

https://www.cs.hmc.edu/~adavidso/monads.pdf

return method and partial application

let (x, w0) = return x w0

return
a

World (a, World)

return a :: a -> IO a

returnx

w0 (x, w0)

x

w0
 (x, w0)

return a World :: (a, World)

return

a

World

 (a, World)

let (x, w0) = return x w0

return

Types

Values

IO Monad

State Transformer Monads
(1C)

35 Young Won Lim
10/22/19

the expression (ioX >>= f) has type World -> (t, World)

a function that takes a World, called w0,

which is used to extract x from its IO monad.

This gets passed to f, resulting in another IO monad,

which again is a function that takes a World

and returns a x and a new, updated World.

We give it the World we got back from getting x out of its monad,

and the thing it gives back to us is the t with a final version of the World

.

https://www.cs.hmc.edu/~adavidso/monads.pdf

bind method (>>=)

ioXWorld (t, World)
f

World
(t, World)

 f x world1

 world0 (x, world1)

t

x

world1

the implementation of bind

IO Monad

State Transformer Monads
(1C)

36 Young Won Lim
10/22/19

http://hackage.haskell.org/package/base-4.12.0.0/docs/Control-Monad-ST.html

ST Monad

Control.Monad.ST

State Transformer Monads
(1C)

37 Young Won Lim
10/22/19

ST monad

● a more powerful version of the State monad

● was originally written

to provide Haskell with IO capability

IO monad is basically just

a State monad with an environment

of all the information about the real world.

inside GHC at least, ST is used,

and the environment is a type called RealWorld.

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

ST, IO, and State monads

State Transformer Monads
(1C)

38 Young Won Lim
10/22/19

data ST s a

an ST computation

● an internal state is used to produce results

(ST s a is similar to State s a)

● the state is mutable

(ST s a is different from State s a)

https://en.wikibooks.org/wiki/Haskell/Mutable_objects

ST Monad – mutable state

State Transformer Monads
(1C)

39 Young Won Lim
10/22/19

data ST s a

an ST computation

● an internal state is used to produce results

(ST s a is similar to State s a)

● the state is mutable ……… mutable variable

(ST s a is different from State s a)

https://en.wikibooks.org/wiki/Haskell/Mutable_objects

ST Monad – mutable state

State Transformer Monads
(1C)

40 Young Won Lim
10/22/19

functions written using the ST monad

appear completely pure to the rest of the program.

This allows programmers to produce imperative code

where it may be impractical to write functional code,

while still keeping all the safety that pure code provides.

https://en.wikipedia.org/wiki/Haskell_features#ST_monad

ST Monad – imperative code enabled

State Transformer Monads
(1C)

41 Young Won Lim
10/22/19

In a pure functional language,

you can't do anything that has a side effect.

A side effect would mean that evaluating an expression

changes some internal state that would later cause

evaluating the same expression to have a different result.

https://stackoverflow.com/questions/4382223/what-does-pure-mean-in-pure-functional-language

Pure functional language

State Transformer Monads
(1C)

42 Young Won Lim
10/22/19

For example, a pure functional language cannot

● have an assignment operator …. (imperative code)

● or do input/output ……………….. (IO monad)

although for practical purposes,

even pure functional languages

often call impure libraries to do I/O.

https://stackoverflow.com/questions/4382223/what-does-pure-mean-in-pure-functional-language

Side effect example

State Transformer Monads
(1C)

43 Young Won Lim
10/22/19

The ST monad allows programmers

to write imperative algorithms in Haskell,

by using mutable variables (STRef's)

and mutable arrays (STArrays and STUArrays).

● code can have internal side effects

● destructively updating

mutable variables and arrays,

● containing these effects inside the monad.

https://en.wikipedia.org/wiki/Haskell_features#ST_monad

ST monad advantage

State Transformer Monads
(1C)

44 Young Won Lim
10/22/19

a version of the function sum is defined,

in a way that imperative languages are used

a variable is directly updated, ……………………….. (imperative style)

rather than a new value is formed and ……………… (functional style)

passed to the next iteration of the function.

While in place modifications of the n :: STRef s a are occurring,

something that would usually be considered a side effect,

it is all done in a safe way which is deterministic.

Memory modification in place is possible

While maintaining the purity of a function by using runST

https://wiki.haskell.org/Monad/ST

Imperative coding style using STRef Monad

State Transformer Monads
(1C)

45 Young Won Lim
10/22/19

data ST s a

newtype ST s a = ST (State# s -> (# State# s, a #))

newtype ST s a = ST (STRep s a)

type STRep s a = State# s -> (# State# s, a #)

ST s a looks a lot like State s a

An ST computation is one that

uses an internal state to produce results,

except that the state is mutable.

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

ST Monad ST Monad

For mutable state,

Data.STRef provides STRefs.

A STRep s a is exactly like

an IORep s a ,

but it lives in the ST s monad

rather than in IO.

State Transformer Monads
(1C)

46 Young Won Lim
10/22/19

There is one major difference

that sets apart ST

from both State and IO.

Control.Monad.ST offers a runST function with the following type:

runST :: (forall s. ST s a) -> a

If ST involves mutability,

how come we can simply extract

a values from the monad?

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

ST Monad ST Monad

State Transformer Monads
(1C)

47 Young Won Lim
10/22/19

The type signature.

runST :: (forall s. ST s a) -> a

The answer lies in the forall s. part of the type.

Having a forall s. enclosed within the type of an argument

amounts to telling the type checker "s could be anything.

Don't make any assumptions about it".

Not making any assumptions, however, means

that s cannot be matched with anything else −

even with the s from another invocation of runST

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

ST Monad ST Monad

State Transformer Monads
(1C)

48 Young Won Lim
10/22/19

instance Monad (ST s) where

 {-# INLINE (>>=) #-}

 (>>) = (*>)

 (ST m) >>= k

 = ST (\s ->

 case (m s) of

 { (# new_s, r #) -> case (k r) of

 { ST k2 -> (k2 new_s) } })

newtype ST s a = ST (STRep s a)

type STRep s a = State# s -> (# State# s, a #)

http://hackage.haskell.org/package/base-4.12.0.0/docs/Control-Monad-ST.html

(ST s) Monad

State Transformer Monads
(1C)

49 Young Won Lim
10/22/19

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Using a Generic State Transformer (6) ST Monad

State Transformer Monads
(1C)

50 Young Won Lim
10/22/19

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

