Complex Powers and Logs (5A)

Copyright (c) 2012, 2013 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Power and Taylor Series

Power Series

$$
\begin{aligned}
& \sum_{n=0}^{\infty} c_{n}(z-a)^{n} \\
& =c_{0}+c_{1}(z-a)+c_{2}(z-a)^{2}+\cdots
\end{aligned}
$$

always converges if $\quad|z-a|<R$
\Rightarrow can also be differentiated

Taylor Series

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(z-a)^{n} \\
& =f(a)+f^{\prime}(a)(z-a)+\frac{f^{\prime \prime}(a)}{2}(z-a)^{2}+\cdots
\end{aligned}
$$

$$
f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(z-a)^{n}
$$

only valid if the series converges

Power and Taylor Series

Power Series

$$
\begin{aligned}
& \sum_{n=0}^{\infty} c_{n}(z-a)^{n} \\
& =c_{0}+c_{1}(z-a)+c_{2}(z-a)^{2}+\cdots
\end{aligned}
$$

always converges if

$$
|z-a|<R
$$

\Rightarrow can also be differentiated

$$
\begin{aligned}
\frac{1}{z} & =\frac{1}{a+(z-a)}=\frac{1}{a} \frac{1}{1+\left(\frac{z-a}{a}\right)} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{a}\left(\frac{z-a}{a}\right)^{n}
\end{aligned}
$$

Taylor Series

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(z-a)^{n} \\
& =f(a)+f^{\prime}(a)(z-a)+\frac{f^{\prime \prime}(a)}{2}(z-a)^{2}+\cdots
\end{aligned}
$$

$$
f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(z-a)^{n}
$$

only valid if the series converges

$$
\begin{aligned}
& f(z)=e^{z} \quad f^{(n)}(0)=1 \\
& e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}
\end{aligned}
$$

Complex Log : In z

Power Series

$$
\begin{aligned}
& \qquad \frac{1}{z}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{a}\left(\frac{z-a}{a}\right)^{n} \\
& \text { converges if }|z-a|<|a| \\
& \\
& \text { for any } a \neq 0
\end{aligned}
$$

for a sufficiently far away from 0
the size of the disk can be made big

$$
\frac{d}{d z}(\ln z)=\frac{1}{z}
$$

$\ln z$: integral of the power series expansion of $\frac{1}{z}$ at $z=1$

Taylor Series

$$
\begin{aligned}
& e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \\
& \text { converges for all } z
\end{aligned}
$$

$$
e^{w}=z \quad w=\ln z
$$

Polar Representation

$$
\begin{aligned}
& z_{1}=r_{1} e^{i \theta_{1}} \\
& z_{2}=r_{2} e^{i \theta_{2}}
\end{aligned}
$$

$$
\begin{aligned}
z_{1} z_{2} & =r_{1} e^{i \theta_{1}} r_{2} e^{i \theta_{2}} \\
& =r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
z & =x+i y \\
& =r \cos \theta+i r \sin \theta \\
& =r(\cos \theta+i \sin \theta) \\
& =r e^{i \theta} \\
& =|z| e^{i \arg (z)}
\end{aligned}
$$

Principal Argument

$$
\begin{aligned}
z & =x+i y \\
& =r \cos \theta+i r \sin \theta \\
& =r(\cos \theta+i \sin \theta) \\
& =r e^{i \theta} \\
& =|z| e^{i \arg (z)}
\end{aligned}
$$

$\arg (z)$: to be a function of z, it needs to be uniquely defined for every z , by choosing its range

$$
\text { ex) } \quad 0 \leq \arg (z)<2 \pi
$$

free to choose a more convenient definition for a particular problem.
by specifying its range
an argument can be uniquely defined

$$
\begin{aligned}
& \theta=\arg (z) \\
& 0 \leq \arg (z)<2 \pi
\end{aligned}
$$

unique angles

The special argument

$$
\begin{aligned}
& \text { Principal Argument } \operatorname{Arg}(z) \\
& \text { unique angles } \quad-\pi \leq \operatorname{Arg}(z)<+\pi
\end{aligned}
$$

$$
\begin{aligned}
\text { Argument } & \theta \\
\text { many angles } & \\
& =\operatorname{Arg}(z) \\
& \operatorname{Arg}(z)+2 k \pi
\end{aligned}
$$

Complex Log

$$
\begin{array}{ll}
|z|=e^{u} & \arg (z)=\arg \left(e^{i v}\right) \\
u=\ln |z| & v=\arg (z)+2 k \pi
\end{array}
$$

$$
\begin{array}{rl|l}
z=e^{w} & =e^{u+i v} & w=u+i v \\
& =\left|e^{u+i v}\right| e^{i \arg \left(e^{u+i v}\right)} & \\
& =\left|e^{u} \cdot e^{i v}\right| e^{i \arg \left(e^{u} \cdot e^{i v}\right)} & \left|e^{u}\right|=1, \quad \arg \left(e^{u}\right)=0 \\
& =|z| e^{i \arg (z)} & =e^{u} e^{\operatorname{iarg}\left(e^{i v}\right)}
\end{array}
$$

$$
z=|z| e^{i \arg (z)}=e^{u} e^{i \arg \left(e^{i v}\right)}
$$

$$
\Rightarrow \quad z=e^{\ln |z|} e^{i(\arg (z)+2 k \pi)}
$$

$2 k \pi$ is necessary assuming arg is uniquely defined with its range specified

Complex Log : In z

$$
z=|z| e^{i \arg (z)}=e^{u} e^{\operatorname{iarg}\left(e^{i v}\right)}
$$

$$
z=e^{\ln |z|} e^{i(\arg (z)+2 k \pi)}
$$

many angles

$$
\begin{aligned}
z & =e^{\ln |z|+i(\arg (z)+2 k \pi)} \\
\ln z & =\ln |z|+i(\arg (z)+2 k \pi)
\end{aligned}
$$

$2 k \pi$ is needed:
assuming \arg is uniquely defined with its range specified
unique argument

$$
\begin{aligned}
z & =e^{\ln |z|+\arg (z)} \\
\ln z & =\ln |z|+i \arg (z)
\end{aligned}
$$

$$
\begin{aligned}
z & =|z| e^{\operatorname{iarg}(z)} \\
\ln z & =\ln |z|+\operatorname{iarg}(z)
\end{aligned}
$$

A mapping of In z

Complex Powers

$$
\begin{aligned}
& z=e^{w} \Leftrightarrow w=\ln z \\
& z=e^{w}=e^{\ln z}
\end{aligned}
$$

$$
\begin{aligned}
& a^{b}=e^{w} \\
& a^{b}=e^{w}=e^{\ln a^{b}}=e^{b \ln a}
\end{aligned}
$$

$$
z=e^{\ln |z|} e^{i \arg (z)}
$$

$$
\begin{aligned}
& z^{b}=e^{w}=e^{\ln z^{b}}=e^{b \ln z} \\
& z^{b}=e^{b(\ln |z|+\operatorname{iarg}(z))}=e^{b \ln |z|} e^{i b \operatorname{barg}(z)}
\end{aligned}
$$

$$
z^{b}=e^{b \ln |z|} e^{i b \arg (z)}
$$

$$
a^{z}=e^{z \ln |a|} e^{i z \arg (a)}
$$

$$
a^{z}=e^{w}=e^{\ln a^{z}}=e^{z \ln a}
$$

$$
a^{z}=e^{z(\ln |a|+i \arg (a))}=e^{z \ln |a|} e^{i z \arg (a)}
$$

Complex Logs Example

free to choose more convenient definition for a problem

$$
(-1)=e^{-i \pi+i 2 k \pi}
$$

$$
\begin{aligned}
\ln (-1)= & \ln |-1|+i \arg (-1) \\
& \begin{cases}-i(\pi-2 k \pi) \\
-i \pi & \text { (Principal Argument) }\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
(-1)^{i}= & e^{i \ln (-1)}=e^{i(-i(\pi-2 k \pi))} \\
& \begin{cases}e^{\pi-2 k \pi}=e^{+\pi} e^{-2 k \pi} \\
e^{+\pi} & \text { (Principal Argument) }\end{cases}
\end{aligned}
$$

$(+1)$	$=e^{0}$	$(+1)^{i}$	$=e^{0}$	
$(+i)$	$=e^{+i \pi / 2}$	$(+i)^{i}$	$=e^{-\pi / 2}$	0.207
(-1)	$=e^{-i \pi}$	$(-1)^{i}$	$=e^{+\pi}$	23.1
$(-i)$	$=e^{-i \pi / 2}$	$(-i)^{i}$	$=e^{+\pi / 2}$	4.81

$$
\begin{array}{lllll}
(+1) & =e^{0} & (+1)^{i} & =e^{0} \\
(+i) & =e^{+i \pi / 2} & (+i)^{i} & =e^{-\pi / 2} & 0.207 \\
(-1) & =e^{-i \pi} & (-1)^{i} & =e^{+\pi} & 23.1 \\
(-i) & =e^{-i \pi / 2} & (-i)^{i} & =e^{+\pi / 2} & 4.81
\end{array}
$$

Complex Power Examples : z^{i}

$$
\begin{aligned}
& (+1)=e^{+i(0-2 k \pi)} \\
& (+1)^{i}=e^{i \ln (+1)}=e^{0} e^{+2 k \pi} \\
& (+i)=e^{+i(\pi / 2-2 k \pi)} \\
& (+i)^{i}=e^{i \ln (+i} \\
& =e^{-\pi / 2} e^{+2 k \pi} \\
& (-1)^{i}=e^{i \ln (-1)}=e^{+\pi} e^{-2 k \pi} \\
& (-i)^{i}=e^{-i(\pi / 2-2 k \pi)} \\
& (-i)^{i}=e^{i \ln (-i)}=e^{+\pi / 2} e^{-2 k \pi} \\
& (+2)=e^{\ln 2+i(0-2 k \pi)} \quad(+2)^{i}=e^{i(\ln 2+i(0-2 k \pi))}=e^{0} e^{+2 k \pi} e^{i \ln 2} \\
& (+2 i)=e^{\ln 2+i(\pi / 2-2 k \pi)} \quad(+2 i)^{i}=e^{i(\ln 2+i(\pi / 2-2 k \pi))}=e^{-\pi / 2} e^{+2 k \pi} e^{i \ln 2} \\
& (-2)^{i}=e^{i(\ln 2-i(\pi-2 k \pi))}=e^{+\pi} e^{-2 k \pi} e^{i \ln 2} \\
& (-2 i)=e^{\ln 2-i(\pi / 2-2 k \pi)} \quad(-2 i)^{i}=e^{i(\ln 2-i(\pi / 2-2 k \pi))}=e^{+\pi / 2} e^{-2 k \pi} e^{i \ln 2} \\
& (+2)^{i}=e^{0} \quad e^{i \ln 2} \\
& (+2 i)^{i}=e^{-\pi / 2} e^{i \ln 2} \\
& (-2)^{i}=e^{+\pi} e^{i \ln 2} \\
& (-2 i)^{i}=e^{+\pi / 2} e^{i \ln 2} \\
& \ln 2=0.693 \quad \cos (\ln 2)=0.769 \\
& e^{\pi}=20.140 \\
& \sin (\ln 2)=0.639 \\
& e^{\pi / 2}=4.810
\end{aligned}
$$

Complex Roots

$$
\begin{aligned}
& z^{n}-a=0 \\
& z=|a|^{1 / n} e^{i(\arg (a) / n+2 k \pi / n)} \\
& z^{n}=r^{n} e^{i n \theta}=a=|a| e^{i \arg (a)} \\
& r^{n}=|a| \\
& n \theta=\arg (a)+2 k \pi \\
& r=|a|^{\frac{1}{n}} \quad \theta=\frac{\arg (a)}{n}+\frac{2 k \pi}{n}
\end{aligned}
$$

Complex Roots: $z^{4}=-1$

$$
\begin{aligned}
& z^{n}-a=0 \\
& z=|a|^{1 / n} e^{i(\arg (a) / n+2 k \pi / n)} \\
& r=|a|^{\frac{1}{n}} \quad \theta=\frac{\arg (a)}{n}+\frac{2 k \pi}{n}
\end{aligned}
$$

$$
z=-\frac{\pi}{4}+\frac{2 k \pi}{4}
$$

Complex Roots : $\mathrm{z}^{4}=1$

$$
r=|a|^{\frac{1}{4}} \quad \theta=\frac{1}{4}(-\pi+2 k \pi) \quad z^{4}=-1
$$

Complex Powers: $z^{1 / 2}$

$$
\begin{aligned}
\oint_{|z|=1} \sqrt{z} d z & =\int_{\theta_{0}}^{\theta_{0}+2 \pi} e^{i \theta / 2} i e^{i \theta} d \theta \\
& =\int_{\theta_{0}}^{\theta_{0}+2 \pi} i e^{i 3 \theta / 2} d \theta=\left[\frac{2}{3} e^{i 3 \theta / 2}\right]_{\theta_{0}}^{\theta_{0}+2 \pi} \\
& =\frac{2}{3}\left(e^{i 3\left(\theta_{0}+2 \pi\right) / 2}-e^{i 3 \theta_{0} / 2}\right) \\
& =\frac{2}{3} e^{i 3 \theta_{0} / 2}\left(e^{i 3 \pi}-1\right)=-\frac{4}{3} e^{i 3 \theta_{0} / 2}
\end{aligned}
$$

$$
\begin{aligned}
\sqrt{z} & =|z|^{1 / 2} e^{+i \arg (z) / 2} \\
\theta_{0} & \leq \arg (z)<\theta_{0}+2 \pi \\
\theta_{0} & <\arg (z) \leq \theta_{0}+2 \pi
\end{aligned}
$$

the definition of \sqrt{z} also depends on θ_{0}
the circular integration depends on where the closed circle begins θ_{0}
implicitly assumed definition of \sqrt{z} depends on θ_{0}

Complex Powers: $z^{1 / 2}$

$$
\begin{array}{l|l}
\text { real } x \geq 0 & \text { complex } \quad z \\
y^{2}=x & w^{2}=z \\
y=+\sqrt{x} & w=+\sqrt{z} \\
y=-\sqrt{x} & w=-\sqrt{z} \\
\sqrt{x} \geq 0 & \mathfrak{R}\{\sqrt{z}\} \geq 0
\end{array}
$$

if we would want this, then

$$
\begin{aligned}
\sqrt{z} & =|z|^{1 / 2} e^{+i \arg (z) / 2} \\
-\pi & <\arg (z)<+\pi \\
& -\pi / 2<\arg (z) / 2<+\pi / 2
\end{aligned}
$$

but we would have excluded all the pure imaginary numbers also.

The MATLAB's defintion

$$
\begin{gathered}
\sqrt{z}=|z|^{1 / 2} e^{+i \arg (z) / 2} \\
-\pi<\arg (z) \leq+\pi
\end{gathered}
$$

a discontinuity in \sqrt{z} when the negative real axis

$$
\begin{gathered}
\sqrt{z}=|z|^{1 / 2} e^{+i \arg (z) / 2} \\
-\pi \leq \arg (z)<+\pi
\end{gathered}
$$

a discontinuity in \sqrt{z} when the positive real axis

Branch Cut

$$
\begin{aligned}
\sqrt{z} & =|z|^{1 / 2} e^{+i \arg (z) / 2} \\
& -\pi<\arg (z) \leq+\pi
\end{aligned}
$$

$$
\begin{aligned}
\sqrt{z} & =|z|^{1 / 2} e^{+i \arg (z) / 2} \\
& 0<\arg (z) \leq+2 \pi
\end{aligned}
$$

if we go around a branch point, then there is
always a discontinuity somewhere

Winding Number ($\mathrm{z}^{1 / 2}$)

Consider computing the square root of points along the different paths that are continuous

two classes of paths

$$
\begin{array}{lll}
\sqrt{z}=\sqrt{r e^{+i \theta}}=\sqrt{r} e^{+i \theta / 2} & \sqrt{z_{1}}=+\sqrt{2} e^{+i \pi / 8} & \text { even number of rounding } \\
\sqrt{z}=\sqrt{r e^{+i(\theta+2 \pi)}}=\sqrt{r} e^{+i \theta / 2} e^{i \pi} & \sqrt{z_{1}}=-\sqrt{2} e^{+i \pi / 8} & \text { odd number of rounding }
\end{array}
$$

Range of Arguments ($\mathrm{z}^{1 / 2}$)

$$
\begin{aligned}
& r=|2|^{\frac{1}{2}} \\
& \theta=\frac{1}{2}\left(\frac{\pi}{4}+2 k \pi\right)
\end{aligned} \quad \backsim \quad z^{2}=2 \cdot e^{+j \pi / 4}
$$

even number of rounding

$$
\begin{aligned}
& 0 \leq \arg (z)<2 \pi \quad: \frac{1}{4} \pi \\
& \theta_{0}=+\frac{1}{2}\left(\frac{1}{4} \pi\right) \quad \theta_{0}^{2}=\frac{1}{4} \pi
\end{aligned}
$$

$$
\begin{aligned}
& 2 \pi \leq \arg (z)<4 \pi \quad: \frac{9}{4} \pi \\
& \theta_{1}=+\frac{1}{2}\left(\frac{9}{4} \pi\right) \quad \theta_{1}^{2}=\frac{9}{4} \pi
\end{aligned}
$$

odd number of rounding
a closed loop in a Riemann surface

$=$

Domain \& Range Complex Planes $\left(z^{1 / 2}\right)$

$$
\begin{array}{ll}
\sqrt{z}=\sqrt{r e^{+i \theta}}=\sqrt{r} e^{+i \theta / 2} & +\sqrt{r} \cos \frac{\theta}{2}+i \sqrt{r} \sin \frac{\theta}{2} \\
\sqrt{z}=\sqrt{r e^{+i \theta+2 \pi}}=\sqrt{r} e^{+i \theta / 2} e^{i \pi} & -\sqrt{r} \cos \frac{\theta}{2}-i \sqrt{r} \sin \frac{\theta}{2}
\end{array}
$$

$$
\begin{array}{ll}
\mathfrak{R}\{\sqrt{z}\}=+\sqrt{r} \cos \frac{\theta}{2} & \mathfrak{J}\{\sqrt{z}\}=+\sqrt{r} \sin \frac{\theta}{2} \\
\mathfrak{R}\{\sqrt{z}\}=-\sqrt{r} \cos \frac{\theta}{2} & \Im\{\sqrt{z}\}=-\sqrt{r} \sin \frac{\theta}{2}
\end{array}
$$

$$
+\pi \leq \theta<+3 \pi
$$

Range
Complex
Plane

Riemann Surface ($\mathrm{z}^{1 / 2}$) - (1)

$$
\begin{aligned}
& \mathfrak{R}\{\sqrt{\boldsymbol{z}}\}=+\sqrt{r} \cos \frac{\theta}{2} \\
& \mathfrak{R}\{\sqrt{\boldsymbol{z}}\}=-\sqrt{r} \cos \frac{\theta}{2}
\end{aligned}
$$

Riemann surface for the function $f(z)=\sqrt{ }$ z. The two horizontal axes represent the real and imaginary parts of z, while the vertical axis represents the real part of $\sqrt{ } \mathrm{z}$. For the imaginary part of $\sqrt{ } \mathbf{z}$, rotate the plot 180° around the vertical axis. [wikipedia.org]

For visualizing a multivalued function.
a geometric construction that permits surfaces to be the domain or range of a multivalued function.

Riemann Surface ($\left.z^{1 / 2}\right)$ - (2)

http://scipp.ucsc.edu/~haber/ph116A/ComplexFunBranchTheory.pdf

Riemann Surface ($z^{1 / 2}$) - (3)

$\underbrace{}$
$\mathfrak{R}\{\sqrt{z}\}=-\cos \frac{\theta}{2}$
http://scipp.ucsc.edu/~haber/ph116A/ComplexFunBranchTheory.pdf

Riemann Surface (z/2/) - (4)

This Riemann surface makes "full square root function" continuous for all $z \neq 0$.
between the point a and the point b, the domain switches from the upper half-plane to the lower half-plane.
no other way to get from the point a to the point b except going counterclockwise.

Domain

Range

http://scipp.ucsc.edu/~haber/ph116A/ComplexFunBranchTheory.pdf

Riemann Surface

A one-dimensional complex manifold. can be thought of as "deformed versions" of the complex plane: locally near every point they look like patches of the complex plane, but the global topology can be quite different. For example, they can look like a sphere or a torus or a couple of sheets glued together.

Holomorphic functions
(conformal maps, regular function)
Riemann surfaces are nowadays considered the natural setting for studying the global behavior of these functions, especially multivalued functions such as the square root and other algebraic functions, or the logarithm.

The phrase "holomorphic at a point z0" means not just differentiable at $z 0$, but differentiable everywhere within some neighborhood of $z 0$.

The existence of a complex derivative in a neighborhood is a very strong condition, for it implies that any holomorphic function is actually infinitely differentiable and equal to its own Taylor series.

References

[1] http://en.wikipedia.org/
[2] http://planetmath.org/
[3] M.L. Boas, "Mathematical Methods in the Physical Sciences"
[4] E. Kreyszig, "Advanced Engineering Mathematics"
[5] D. G. Zill, W. S. Wright, "Advanced Engineering Mathematics"
[6] T. J. Cavicchi, "Digital Signal Processing"
[7] F. Waleffe, Math 321 Notes, UW 2012/12/11
[8] J. Nearing, University of Miami
[9] http://scipp.ucsc.edu/~haber/ph116A/ComplexFunBranchTheory.pdf

