

Intro to factor analysis

1What is it? 2Purposes 3History 4Types 5Models

10

Factor analysis is...

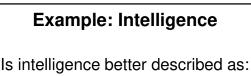
- a family of multivariate statistical techniques used for examining correlations amongst variables.
- for identifying clusters of inter-correlated variables (called 'factors').

Purposes

Main applications of factor analysis:

1. Theory development:

Examine the hypothetical structure of relations between constructs, identify factors, and classify variables.


2. Data reduction:

Reduce the number of variables down to a smaller number of factors, leading to calculation of composite scores for each factor. The composite scores can be used in subsequent

Purposes: Theory development

- FA is used to test theoretical models by investigating the underlying correlational pattern shared by the variables.
- The goal is to address a theoretical question such as:
 - -How many personality factors are there? (and what are they?)
 - Is intelligence general or multiple?

Example: PersonalityHow many dimensions of personality
are there – and what are they?e.g., FA can help to decide between 3 or 5
factor personality models:Eysenck's 3?Big 5?• Extraversion
• Neuroticism
• Psychoticism• Neuroticism
• Agreeableness
• Openness
• Conscientiousness 11

- one global factor (g) or
- several specific factors (e.g., verbal, spatial, mathematical, social, kinaesthetic)?

A can help decide which model is hert

FA can help decide which model is best supported by evidence.

16

Purposes: Data reduction

- In psychometric instrument development, FA is used to simplify the data structure by identifying a smaller number of underlying factors.
- FA then helps to identify items for improvement or removal because they are:
 redundant, or
 - unclear/irrelevant, or
 - complex
- FA informs the calculation of factor scores, (composite scores combine a respondent's scores for several related items). 13

History of factor analysis

(Goldberg & Digman, 1994, cited in Fehriinger, 2004)

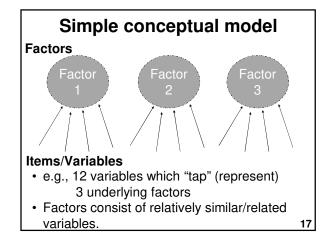
- Invented by Pearson (1901) and further developed by Spearman (1904)
- Usage hampered by onerousness of hand calculation
- Since the advent of computers, usage has thrived, especially for:
 - Theory e.g., determining the structure of psychological constructs such as personality or intelligence
 - Practice e.g., development of 10,000s+ of psychological screening & measurement tests

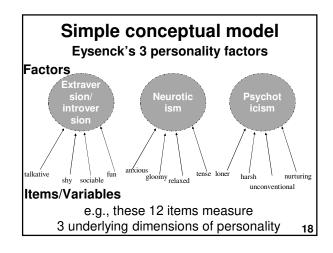
Types of factor analysis

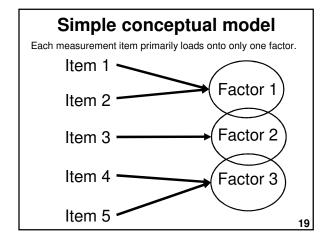
EFA = Exploratory Factor Analysis

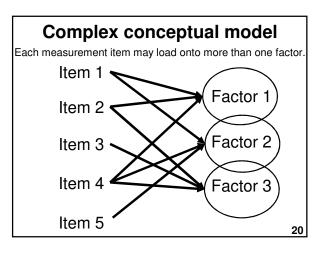
• explores & summarises underlying correlational structure for a data set

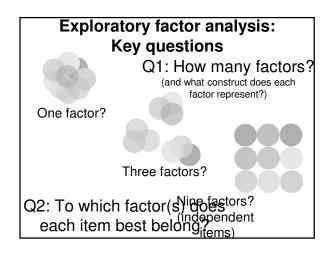
CFA = Confirmatory Factor Analysis

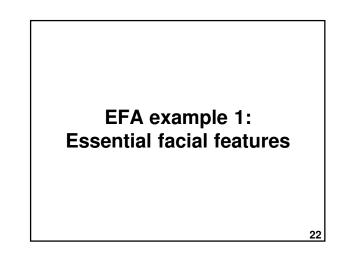

• tests correlational structure of a data set against a hypothesised structure and rates the "goodness of fit"

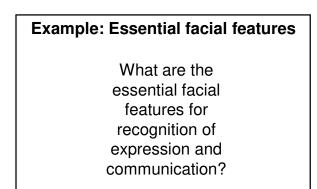

15

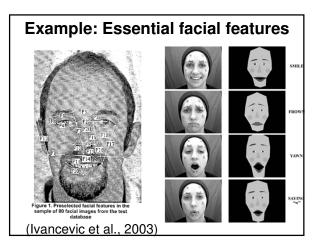

EFA vs. CFA


This (introductory) lecture focuses on **Exploratory Factor Analysis** (recommended for undergraduate level). **Confirmatory Factor Analysis** is now generally preferred, but is more advanced


(recommended for graduate/professional level).







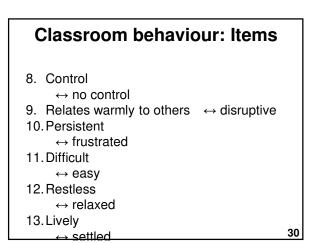
(Ivancevic et al., 2003)

Example: Essential facial features

- The importance of 20 facial features in facial recognition was measured with 80 facial images.
- Based on EFA (PC, orthogonal), 6 factors were identified, representing 76.5% of the total variability in facial recognition:
 - 1. upper-lip
 - 2. eyebrow-position
 - 3. nose-width
 - 4. eye-position
 - 5. eye/eyebrow-length
 - 6. face-width

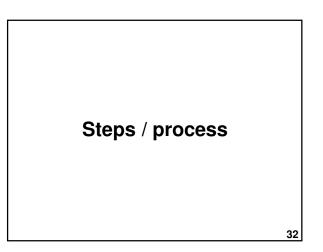
25

EFA example 2: Classroom behaviour

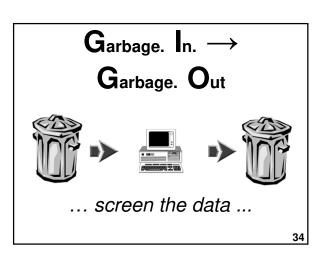

Classroom behaviour

Francis (2007) - based on the Victorian Quality Schools Project

- 15 classroom behaviours of highschool students were rated by teachers using a 5-point Likert scale.
- Task: Identify groups of variables (behaviours) that are strongly inter-related and represent underlying factors.
 27


		be	eha	av	io	ur: Items
over the dot (e.g., X) wh	nich is n	neares	t the st	ateme	nt that	best describes the
ot concentrate on any cular task; easily distracted	0	0	0	0	0	Can concentrate on any task; not easily distracted
everes in the face of ult or challenging tasks	0	0	0	0	0	Lacks perseverance; is impatient with difficult or challenging tasks
stent, sustained attention	0	0	0	0	0	Easily frustrated; short attention span
oseful activity	0	0	0	0	0	Aimless; impulsive activity
	over the dot (e.g., λ) wh TYPIC of concentrate on any ular task; easily distracted everes in the face of it or challenging tasks stent, sustained attention	over the dot (e.g., XX) which is r TYPICAL beh ot concentrate on any o ular task; easily distracted weres in the face of o it or challenging tasks stent, sustained attention o	over the dot (e.g., X) which is nearese TYPICAL behavior of ot concentrate on any o ular task; easily distracted weres in the face of o it or challenging tasks stent, sustained attention o o	over the dot (e.g., A) which is nearest the st TYPICAL behavior of THS ot concentrate on any ular task; easily distracted o veres in the face of it or challenging tasks o o	over the dot (e.g., Xo) which is nearest the stateme TYPICAL behavior of THIS stude ot concentrate on any o o o ular task; easily distracted veres in the face of o o o utor challenging tasks o o o o	ular task; easily distracted o o o o o o o o o o o o o o o o o o o

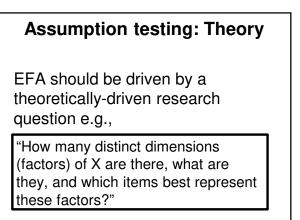
	Classroom be	haviour: Items
1.	Cannot concentrate	↔ can concentrate
2.	Curious & enquiring	↔ little curiousity
3.	Perseveres	↔ lacks
	perseverance	
4.	Irritable	↔ even-
	tempered	
5.	Easily excited	\leftrightarrow not easily
	excited	
6.	Patient	\leftrightarrow
	demanding	20
L7_	Easily upset	→ contententententententententententententen


Classroom behaviour

- Results are embedded in subsequent slides
- See also: Tutorial 03: Psychometrics: EFA Exercise 2: Classroom behaviour

Steps / process

- 1 Test assumptions
- 2 Select extraction method
- 3 Determine # of factors
- (Eigen Values, % variance explained, scree plot) 4 Select items
- (check factor loadings to identify which items belong best in which factor; drop items one by one; repeat)
- 5 Name and define factors
- 6 Examine correlations amongst factors
- 7 Analyse internal reliability
- 8 Compute composite scores


Assumption testing

1 Theory

- 2 Sample size
- 3 Level of measurement
- 4 Normality
- 5 Linearity
- 6Outliers
- 7 Factorability

35

33

40

Assumption testing: Sample size

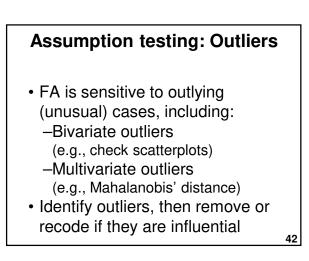
- FA is "data hungry"
- Some guidelines:
 - -Minimum:
 - N > 5 cases per variable
 - e.g., 12 variables, should have > 60 cases (1:5)
 - -Ideal:
 - N > 20 cases per variable
 - e.g., 12 variables, ideally have > 240 cases (1:20) -Total:
 - N > 200 preferable

37

Assumption testing: Sample size

Comrey and Lee's (1992) guidelines: 50 = very poor 100 = poor 200 = fair 300 = good 500 = very good 1000+ = excellent

Assumption testing: Sample size Journal of Personality Journal of Fabrigar et al. (1999) and Social Applied Psychology Psychology Variable N % N % Sample size 100 or less 30 18.9 8 13.8 101-200 44 27.7 14 24.1 201-300 25 15.7 9 15.5 301-400 13 8.2 2 3.4 25 More than 400 43.1 47 29.6


Assumption testing: Level of measurement

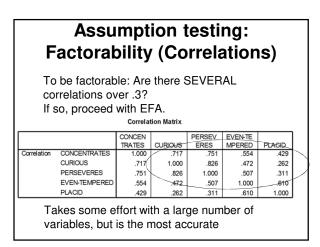
 All variables must be suitable for Pearson product-moment correlational analysis

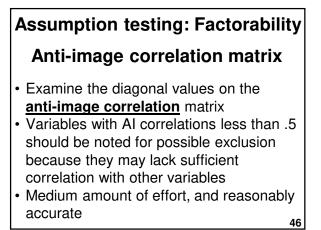
i.e., the variables should have interval or ratio levels of measurement.

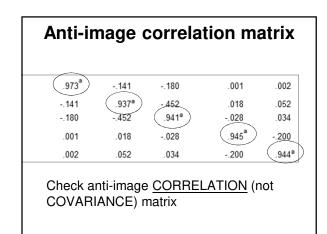
Assumption testing: Normality

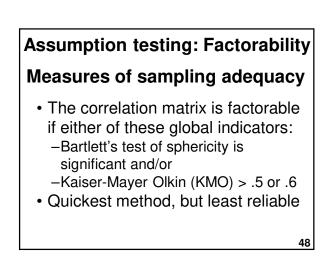
- FA is generally robust to minor violation of assumptions of normality.
- If the variables are normally distributed then the solution is enhanced.

Assumption testing: Linearity

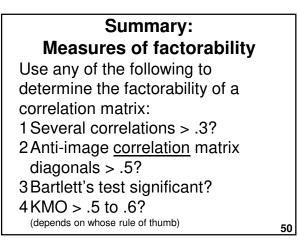

 FA is based on correlations between variables, so it is important to check there are linear relations amongst the variables (i.e., check scatterplots)

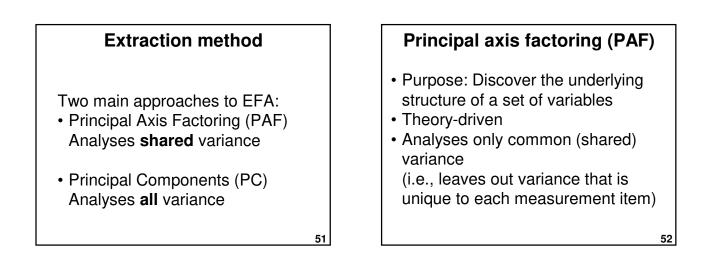

Assumption testing: Factorability


Factorability assesses whether there are sufficient intercorrelations amongst the items to warrant factor analysis.


- Assess factorability via one or more of:
- Correlation matrix correlations > .3?
- Anti-image matrix diagonals > .5?
- Measures of sampling adequacy (MSAs)?
 Bartlett's sig.?
 - KMO > .5 or .6?

43





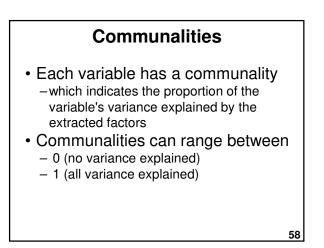
KMO and Bartlett's Test KMO and Bartlett's Test Kaiser-Meyer-Olkin Measure of Sampling Adequacy. \$956 Bartlett's Test of Sphericity Approx. Chi-Square 19654.15 Image: Sig. 1905 1905 Significant-p<.05</td> 000 1905

53

Principal components (PC)

- · More commonly used
- Purpose: Reduce many variables down to a smaller number of factor scores. These scores can be used in other analyses (e.g., for hypothesis testing).
- Analyses all the variance in each variable (common and unique)

Variance componentsTotal variance of a variableCommon
variance
(shared with
other
variables)Unique
variance
(not shared
with other
variables)PAFPC


PC vs. PAF

- In practice, try both PC and PAF.
- Often there is little difference between PC and PAF solutions.
- If you get different solutions, try to work out why and decide on which solution is more appropriate.

Explained variance

- A good factor solution is one that explains the lion's share of the variance with the fewest factors
- Realistically, researchers are happy with 50 to 75% of the variance explained

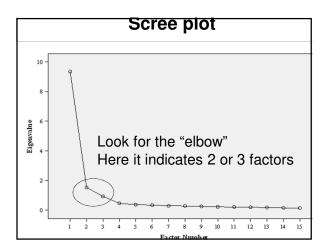
_		Initial Eigenva	lues	Extraction	Sums of Squ	ared Loadings	Rotation
Factor	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total
1	9.355	62.366	62.366	9.094	60.628	60.628	7.801
2	1.532	10.216	72.583	1.294	8.625	69.253	7.261
3	.933	6.220	78.802	.635	4.232	73.485	5.732
4	.467	3.113	81.915				
5	.378	2.519	84.434	2 fac	tore o	volain 7	2 50/
6	.344	2.295	86.729	Jiac	1015 6	xplain 7	3.5 /0
7	.305	2.032	88.761	of the	e varia	ance in t	he 15
8	.285	1.902	90.663		• • • • • •		
9	.262	1.745	92.408	class	sroom	behavic	our
10	.229	1.525	93.933	itomo		ry usefu	
11	.219	1.459	95.392	nema		y useiu	1:
12	.201	1.340	96.732				
13	.184	1.227	97.959				
14	.159	1.059	99.018				
15	.147	.982	100.000				

Communalities

- High communalities (> .5): Extracted factors explain most of the variance in the variable
- Low communalities (< .5): A variable has considerable variance unexplained by the extracted factors. Consider:
 - Extracting more factors
 - Eliminating the item

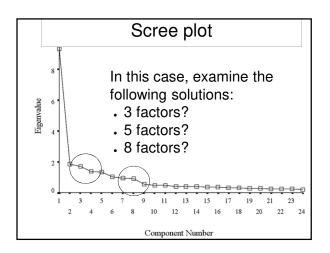
59

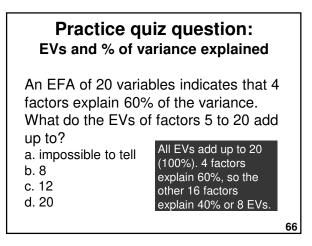
Communalities		> .5 for all variables
	Initial	Extraction
behav1 CONCENTRATES	.713	.746
behav2 CURIOUS	.743	.788
behav3 PERSEVERES	.766	.811
behav4 EVEN-TEMPERED	.729	.747
behav5 PLACID	.609	.664
behav6 COMPLIANT	.687	.710
behav7 SELF-CONTROLLED	.730	.749
behav8 RELATES-WARMLY	.605	.660
behav9 SUSTAINED ATTENTION	.776	.803
behav10 COMMUNICATIVE	.657	.674
behav11 RELAXED	.786	.820
behav12 CALM	.737	.786
behav13 PURPOSEFUL ACTIVITY	.764	.798
behav14 COOPERATIVE	.626	.647
behav15 CONTENTED	.595	.621
Extraction Method: Principal Axis Factoring		


Eigen Values (EVs)

- Each variable contributes to the variance that needs to be explained.
- Each factor tries to explain as much of the total variance as possible.
- An EV indicates the amount of overall variance that each factor accounts for.
- Rule of thumb: Eigen values over 1 are "stable" (Kaiser's criterion).
- EVs for successively extracted factors have lower values.
- EVs can be usefully expressed as %s of explained variance.

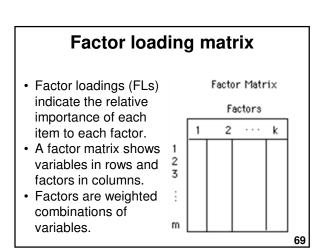
61


 Total of all EVs = the number of variables = or 100%


	In	itial Eigenva	lues	Extraction	Sums of Squ	ared Loadings	Rotation
-		% of			% of		
Factor	Total	Variance	Cumulative %	Total	Variance	Cumulative %	Total
1	9.355	62.366	62.366	9.094	60.628	60.628	7.80
2	1.532	10.216	72.583	1.294	8.625	69.253	7.26
3	.933	6.220	78.802	.635	4.232	73.485	5.73
4	.467	3.113	81.915				~ ~~
5	.378	2.519	84.434	EVS	range	between	9.36
6	.344	2.295	86.729	and	0.15.1	Two facto	ors
7	.305	2.032	88.761				
8	.285	1.902	90.663	satis	sty kais	ser's crite	rion
9	.262	1.745	92.408	(FV	s > 1) t	out the th	ird
10	.229	1.525	93.933	`			
11	.219	1.459	95.392		5.93 (a	and turns	out
12	.201	1.340	96.732	to b	e a use	ful factor	·).
13	.184	1.227	97.959				·
14	.159	1.059	99.018	ine	re is a	drop to th	ie 4"
15	.147	.982	100.000	facto	or's EV	-	

Scree plot

- A cumulative line graph of eigen values (EVs).
- Depicts amount of variance explained by each factor.
 - -1st factor explains the most variance.
 - -Last factor explains least amount of variance.
- To determine the optimal # of factors: Look for where additional factors fail to add appreciably to the cumulative explained variance (where the "cliff" turns into "scree").

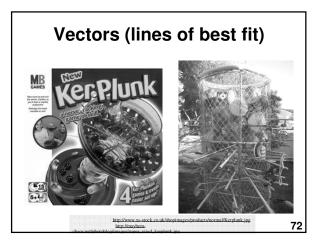

How many factors?

- A subjective decision.
- Aim to explain most of the variance using a small number of factors.
- · Take into account:
 - 1 Theory what is predicted/expected?
 - 2 Eigen Values > 1? (Kaiser's criterion)
 - 3 Scree plot where does it drop off?
 - 4 Interpretability of last factor?
 - 5 Try several different solutions? (consider EFA type, rotation, # of factors)6 Factors must be meaningfully interpretable and make theoretical sense.

67

How many factors?

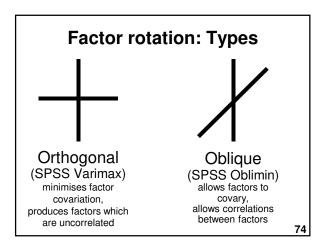
- Aim for 50 to 75% of variance explained by ¼ to ¼ as many factors as variables.
- Stop extracting factors when they no longer represent useful/meaningful clusters of variables.
- Keep checking/clarifying the meaning of each factor – make sure to examine the wording of each item.



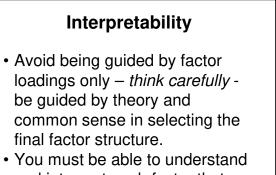
Initial solution: Unrotated factor structure

- In the initial solution, each factor "selfishly" grabs maximum unexplained variance.
- 1st factor extracted:
 - Best possible line of best fit through the original variables.
 - Seeks to explain lion's share of all variance
 - Gives the best single factor summary of the variance in the whole set of items
 - All variables will tend to load strongly on the 1st factor.

Initial solution: Unrotated factor structure


- Each subsequent factor tries to explain the remaining unexplained variance.
- Second factor is orthogonal to first factor - seeks to maximise its own Eigen Value (i.e., tries to gobble up as much of the remaining unexplained variance as possible), etc.

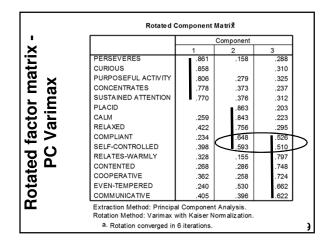
Factor rotation

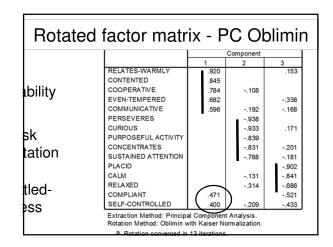

- However, until the factor loadings are rotated, they are difficult to interpret.
 Seldom see a simple unrotated factor structure
 Many variables will load on two or more factors
- Rotation of the factor loading matrix helps to find a more interpretable factor structure.

73

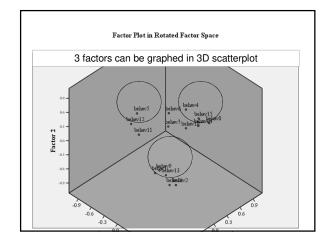
Factor rotation: Orthogonal vs. oblique

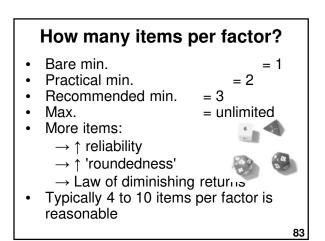
- Theory? (expecting related or unrelated factors?)
- Start with oblique rotation, then check correlations between factors:
 - If > ~.3 then with oblique rotation
 (> 10% shared variance between factors)
- Try both orthogonal and oblique rotations and assess which set of factor loadings are most interpretable? (i.e., which makes most sense?)

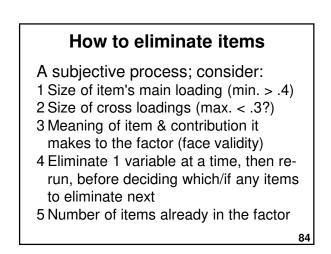

and interpret each factor that you choose to extract.


Interpretability

- Watch out for "seeing what you want to see" when evidence might suggest a different, better solution.
- There may be more than one good solution! e.g., in personality: -2 factor model
 - -5 factor model
 - -16 factor model

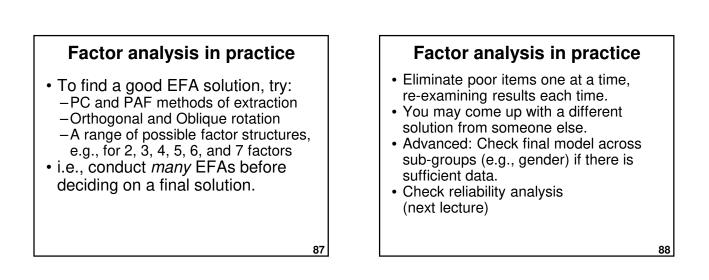

77


Factor loadings & item selection A simple factor structure is most interpretable: 1. Each variable loads strongly (> ±.40) on only one factor 2. Each factor has 3 or more strong loadings; more strongly loading variables = greater reliability 3. Most loadings are high (towards -1 or +1) or low (towards 0) (i.e., few intermediate values).

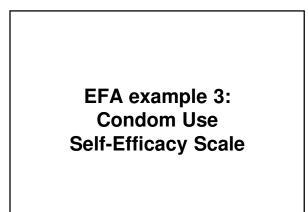


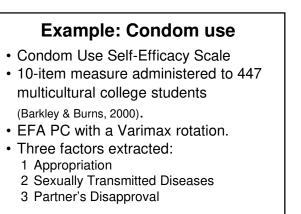
Rotated factor matrix - PC Oblimin						
		1	Factor 2	3		
sk	PERSEVERES CURIOUS	.918 .897	_			
tation	PURPOSEFUL ACTIVITY CONCENTRATES SUSTAINED ATTENTION	.805 .778 .753	.202			
tled-	CALM	.755	.836 .759			
ess	RELAXED RELATES-WARMLY	.282	.689	.851		
ability	CONTENTED COOPERATIVE EVEN-TEMPERED		.269	.800 .735 .717		
	COMMUNICATIVE Extraction Method: Principa	l Axis Factori		.599		
	Rotation Method: Oblimin v			1.		

Factor loadings & item selection


Comrey & Lee's (1992) guideline for primary (target) factor loadings:

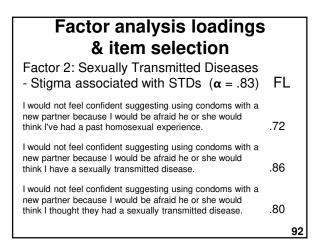
- > .70 excellent
- > .63 very good
- > .55 good
- > .45 fair
- < .32 poor


Factor loadings & item selection


Cut-off for item loadings within a factor: •Look for gap in loadings - e.g.,

- .8
- .7 .6
- .0
- .2
- Also consider: can the factor can be interpreted (i.e., does it make sense?) using items above but not below cut-off?

85



89

Factor analysis loadings & item selection

Factor 1: Appropriation - Acquisition and use of a condom ($\alpha = .76$)	FL	
I feel confident in my ability to put a condom on myself or my partner.	.75	
I feel confident I could purchase condoms without feeling embarrassed.	.65	
I feel confident I could remember to carry a condom with me should I need one.	.61	
I feel confident I could gracefully remove and dispose of a condom after sexual intercourse.	.56	
		91

Factor analysis loadings & item selection

Factor 3: Partner's reaction - students' partners' feelings about condoms $(\alpha = .66)$	FL	
If I were to suggest using a condom to a partner, I would feel afraid that he or she would reject me.	.73	
If I were unsure of my partner's feelings about using condoms I would not suggest using one.	.65	
If my partner and I were to try to use a condom and did not succeed, I would feel embarrassed to try to use one again (e.g. not being able to unroll condom, putting it on backwards or awkwardness).	.58	
backwards of awkwardness).	.50	93

Example: Zimbardo Time Perspective Inventory

- 56 items administered to 606 US college students (Zimbardo & Boyd, 1999).
- EFA PC with a Varimax rotation KMO = .83
- Five factors explained 36% of the variance
- Scree plot showed big drop between the 5th and 6th factors.

Example: Zimbardo Time Perspective Inventory 1. Past – Negative

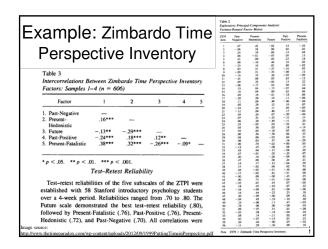
"I think about the bad things that have happened to me in the past."

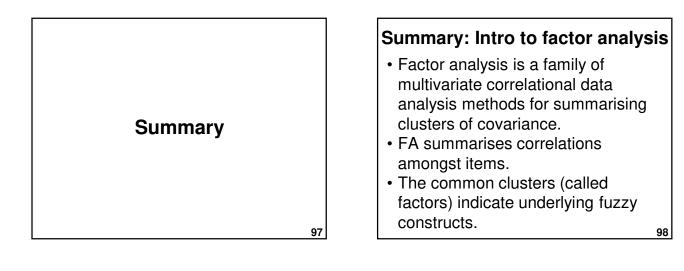
2. Present – Hedonistic

"I do things impulsively."

3. Future

"I am able to resist temptations when I know that there is work to be done."


4. Past – Positive


"I get nostalgic about my childhood."

5. Past – Negative

"My life path is controlled by forces I cannot influence."

95

Summary: Steps / process

- 1 Examine assumptions
- 2 Choose extraction method and rotation
- 3 Determine # of factors
- (Eigen Values, Scree plot, % variance explained) 4 Select items

(check factor loadings to identify which items belong in which factor; drop items one by one; repeat)

- 5 Name and describe factors
- 6 Examine correlations amongst factors
- 7 Analyse internal reliability | Next

8 Compute composite scores

lecture 99

Summary: Assumptions

- Sample size
 - Min: 5+ cases per variables Ideal: 20+ cases per variable)
 Or N > 200
- Bivariate & multivariate outliers
- Factorability of correlation matrix (Measures of Sampling Adequacy)
- Normality enhances the solution

100

Summary: Types of factor analysis

- **PAF** (Principal Axis Factoring): For theoretical data exploration –uses shared variance
- PC (Principal Components): For data reduction –uses all variance

Summary: Rotation

- Orthogonal (Varimax)
 - perpendicular (uncorrelated) factors
- Oblique (Oblimin)
 angled (correlated) factors
- Consider trying both ways
 Are solutions different? Why?

Summary: Factor extraction

How many factors to extract?

- Inspect EVs look for EVs > 1 or sudden drop (inspect scree plot)
- % of variance explained - aim for 50 to 75%
- Interpretability - does each factor "make sense"?
- Theory
 - do the factors fit with theory?

103

Summary: Item selection

An EFA of a good measurement instrument ideally has:

- · a simple factor structure (each variable loads strongly (> +.50) on only one factor)
- each factor has multiple loading variables (more loadings \rightarrow greater reliability)
- target factor loadings are high (> .5) and cross-loadings are low (< .3), with few intermediate values (.3 to .5).

104

References

- Barkley, T. W. Jr., & Burns, J. L. (2000). Factor analysis of the Condom Use Self-Efficacy Scale among multicultural college students. *Health Education Research*, 15(4), 485-489.
- Comrey, A. L. & Lee, H. B. (1992). A first course in factor analysis. Hillsdale, NJ: 2 Erlbaum
- 3 Fehriinger H. M.(2004). Contributions and limitations of Cattell's sixteen personality factor model. 4 Howitt, D. & Cramer, D. (2011). Chapter 30: Factor analysis: Simplifying complex data.
- Howitt, D. & Oraner, D. (2011). Chapter 30: Factor analysis: Simplifying complex data. In Introduction to statistics in psychology (pp. 362-379) (5th ed.). Harlow, UK: Pearson. Ivancevic, V., Kaine, A. K., MCLindin, B. A. & Sunde, J. (2003). <u>Factor analysis of essential facial features</u>. In the *Proceedings of the 25th International Conference on Information Technology Interfaces* (11), pp. 187-191, Cavtat, Croatia. Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating 5
- 6 Hangar, E. H. (1997). D. H. macdalam, H. G. & Graham, E. G. (1997). Evaluating the use of exploratory factor analysis in psychological research. *Psychological Methods*, 4(3), 272-299.
 Francis, G. (2007). *Introduction to SPSS for Windows: v. 15.0 and 14.0 with Notes for*
- 7
- Studentware (5th ed.). Sydney: Pearson Education. Tabachnick, B. G. & Fidell, L. S. (2001). Principal components and factor analysis. In Using multivariate statistics. (4th ed., pp. 582 633). Needham Heights, MA: Allyn & 8 Bacon
- Zimbardo, P. G., & Boyd, J. N. (1999). Putting time in perspective: A valid, reliable individual-differences metric. Journal of Personality and Social Psychology, 77, 1271-105

Next lecture

Psychometric instrument development

- Concepts & their measurement
- Measurement error
- Psychometrics
- Reliability & validity
- Composite scores
- Writing up