
1 Young Won Lim
6/17/22

Monad P3 : Non-terminating Expressions (1F)



2 Young Won Lim
6/17/22

 Copyright (c)  2022  - 2016 Young W. Lim.

  Permission is granted to copy, distribute and/or modify this document  under the terms of the GNU Free Documentation License, Version 1.2 or any 
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.  A copy of the 
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com


Non-terminating
Expressions (1F)

3 Young Won Lim
6/17/22

Non-terminating Expressions



Non-terminating
Expressions (1F)

4 Young Won Lim
6/17/22

Semantics is about defining the "meaning" of a program. 

denotational semantics In Haskell

– the value is a mathematical object of some sort 

the expression 10 (but also the expression 9 + 1) 

have denotations of the number 10 

(rather than the Haskell value 10). 

We usually write that 9 + 1  = 10⟦ ⟧  meaning that 

the denotation of the Haskell expression 9 + 1 

is the number 10.

https://stackoverflow.com/questions/14698414/haskell-pattern-match-diverge-and-%e2%8a%a5/14698510#14698510

Denotational semantics



Non-terminating
Expressions (1F)

5 Young Won Lim
6/17/22

Haskell expressions denote mathematical values. 

Strachey brackets ·  ⟦ ⟧
to denote the "semantic mapping" 

from Haskell to Math.

 

we want our semantic brackets to be compatible 

with semantic operations. 

https://stackoverflow.com/questions/14698414/haskell-pattern-match-diverge-and-%e2%8a%a5/14698510#14698510

Semantic map and Strachey brackets



Non-terminating
Expressions (1F)

6 Young Won Lim
6/17/22

⟦x + y  = x  + y⟧ ⟦ ⟧ ⟦ ⟧

on the left side + is the Haskell function 

(+) :: Num a => a -> a -> a 

and on the right side it's the binary operation 

in a commutative group. 

we can use the properties from the semantic map 

to know how our Haskell functions should work. 

https://stackoverflow.com/questions/14698414/haskell-pattern-match-diverge-and-%e2%8a%a5/14698510#14698510

Semantic map example



Non-terminating
Expressions (1F)

7 Young Won Lim
6/17/22

the commutative property "in Math"

  ⟦x  + y  == y  + x  ⟧ ⟦ ⟧ ⟦ ⟧ ⟦ ⟧
  = x + y  == y + x  ⟦ ⟧ ⟦ ⟧
  = x + y == y + x⟦ ⟧

where the third step also indicates that the Haskell 

(==) :: Eq a => a -> a -> a 

ought to have the properties of a 

mathematical equivalence relationship.

https://stackoverflow.com/questions/14698414/haskell-pattern-match-diverge-and-%e2%8a%a5/14698510#14698510

Commutative property example



Non-terminating
Expressions (1F)

8 Young Won Lim
6/17/22

expressions that result in some kind of a run-time error, 

such as dividing by zero, have the value _|_ (read "bottom"). 

Such an error is not recoverable: irrecoverable errors

programs will not continue past these errors. 

errors encountered by the I/O system, recoverable errors

such as an end-of-file error, are recoverable 

and are handled in a different manner. 

Such an I/O error is really not an error at all 

but rather an exception. 

https://www.haskell.org/tutorial/functions.html

Irrecoverable / recoverable errors



Non-terminating
Expressions (1F)

9 Young Won Lim
6/17/22

The value is ⊥, usually pronounced "bottom". 

It is a value in the semantic sense 

-- it is not a normal Haskell value per se. 

It represents computations 

that do not produce a normal Haskell value: 

exceptions and infinite loops, for example.

https://stackoverflow.com/questions/14698414/haskell-pattern-match-diverge-and-%e2%8a%a5/14698510#14698510

Value in the semantic sense 



Non-terminating
Expressions (1F)

10 Young Won Lim
6/17/22

denotational semantics, where  lives, is ⊥
a mapping  Haskell values 

to some other space of values. 

in order to give meaning to programs 

in a more formal manner 

than just talking about what programs should do 

https://stackoverflow.com/questions/14698414/haskell-pattern-match-diverge-and-%e2%8a%a5/14698510#14698510

Denotational semantics and ⊥ 



Non-terminating
Expressions (1F)

11 Young Won Lim
6/17/22

Consider an expression like let x = x in x 

● there is no Haskell value 

for this expression. 

● If you tried to evaluate it, 

it would simply never finish. 

● not obvious what mathematical object 

this corresponds to. 

https://stackoverflow.com/questions/14698414/haskell-pattern-match-diverge-and-%e2%8a%a5/14698510#14698510

let x = x in x 

 x   =  x 

  x   =  x 

    x   =  x 



Non-terminating
Expressions (1F)

12 Young Won Lim
6/17/22

in order to reason about programs 

that have the following characteristics,

we need to give some denotation for it. 

● with no Haskell value 

● never finishing upon evaluation

● not obvious mathematical object 

So, essentially, we just make up a value ⊥ (bottom)

for all these computations

So ⊥ is just a way to define 

what a computation that doesn't return "means".

https://stackoverflow.com/questions/14698414/haskell-pattern-match-diverge-and-%e2%8a%a5/14698510#14698510

 ⊥ for computations that does not return 



Non-terminating
Expressions (1F)

13 Young Won Lim
6/17/22

We also define other computations like 

undefined and error "some message" as  ⊥
because they also do not have obvious normal values. 

So throwing an exception corresponds to ⊥. 

This is exactly what happens with a failed pattern match.

https://stackoverflow.com/questions/14698414/haskell-pattern-match-diverge-and-%e2%8a%a5/14698510#14698510

⊥for throwing exceptions



Non-terminating
Expressions (1F)

14 Young Won Lim
6/17/22

every Haskell type is "lifted" -- it contains ⊥. 

That is, Bool corresponds to {⊥, True, False} 

rather than just {True, False}. 

This represents the fact that Haskell programs are 

not guaranteed to terminate and can have exceptions. 

This is also true when you define your own type

-- the type contains every value you defined for it as well as ⊥.

https://stackoverflow.com/questions/14698414/haskell-pattern-match-diverge-and-%e2%8a%a5/14698510#14698510

Lifted type



Non-terminating
Expressions (1F)

15 Young Won Lim
6/17/22

interestingly, since Haskell is non-strict, 

⊥ can exist in normal code. 

So you could have a value like Just ⊥, 

and everything will work fine, unless you evaluate it, 

A good example of this is const: 

const 1 ⊥ -- 1

 

this works for failed pattern matches as well:

const 1 (let Just x = Nothing in x) -- 1

https://stackoverflow.com/questions/14698414/haskell-pattern-match-diverge-and-%e2%8a%a5/14698510#14698510

Bottom value in normal code

constant function

const :: a -> b -> a

Input: const 12 3

Output: 12

Input: const 12 (3/0)

Output: 12

aaa x y = let r = 3 *x

              s = 6 *y

              in  r + s

Input: aaa 2 4

Output: 30 



Non-terminating
Expressions (1F)

16 Young Won Lim
6/17/22

let 

  Just x = (binom (n-1) (k-1))

  Just y = (binom (n-1) k)

in

  Just (x + y)

It is fine from the type-checking point of view

extracting the underlying values from the Just wrapper 

(these are x and y), adding them up and rewrapping them.

https://stackoverflow.com/questions/68240639/why-cant-you-use-just-syntax-without-let-in-block-in-haskell

Pattern match in let expression (1) 



Non-terminating
Expressions (1F)

17 Young Won Lim
6/17/22

pattern matches in the let... in expression 

assume that the results of binom (n-1) (k-1)

the results of the form Just x 

but they could also be Nothing - 

in which case your program will crash at runtime! 

The "assignment" Just x = ... 

matches ... against Just x, 

binding x to the wrapped value if the match succeeds. 

It doesn't apply Just to anything.

https://stackoverflow.com/questions/68240639/why-cant-you-use-just-syntax-without-let-in-block-in-haskell

Pattern match in let expression (2) 

let 

  Just x = (binom (n-1) (k-1))

  Just y = (binom (n-1) k)

in

  Just (x + y)



Non-terminating
Expressions (1F)

18 Young Won Lim
6/17/22

An expression language is said to have non-strict semantics 

if expressions can have a value 

even if some of their subexpressions do not 

Haskell is one of the few modern languages 

to have non-strict semantics by default: 

nearly every other language has strict semantics, 

if any subexpression fails to have a value, 

the whole expression fails with it.

https://wiki.haskell.org/Non-strict_semantics

Non-strict semantics (1)



Non-terminating
Expressions (1F)

19 Young Won Lim
6/17/22

non-strict semantics is one of the most important features in Haskell: 

it is what allows programs 

to work with conceptually infinite data structures, 

and it is why people say that 

Haskell lets you write your own control structures. 

It's also one of the motivations 

behind Haskell being a pure language 

(though there are several other good ones). 

https://wiki.haskell.org/Non-strict_semantics

Non-strict semantics (2)



Non-terminating
Expressions (1F)

20 Young Won Lim
6/17/22

A function is called pure 

if it corresponds to a function in the mathematical sense: 

it associates each possible input value with an output value, 

and does nothing else. In particular, it has no side effects

 

 that is to say, invoking it produces no observable effect 

other than the result it returns; 

it cannot also e.g. write to disk, or print to a screen.

https://wiki.haskell.org/Pure

Pure functions (1)



Non-terminating
Expressions (1F)

21 Young Won Lim
6/17/22

A pure function is trivially referentially transparent 

it does not depend on anything other than its parameters, 

so when invoked 

in a different context or 

at a different time 

with the same arguments, 

it will produce the same result.

A programming language may be called purely functional 

if evaluation of expressions is pure. 

https://wiki.haskell.org/Pure

Pure functions (2)



Non-terminating
Expressions (1F)

22 Young Won Lim
6/17/22

Non-strictness means that 

reduction (the mathematical term for evaluation) 

proceeds from the outside in, 

(a+(b*c)) : first +, then (b*c) 

Strict languages work the other way around, 

from the inside out

(a+(b*c)) : first (b*c), then + 

https://wiki.haskell.org/Lazy_vs._non-strict

Non-strict vs. strict evaluation (1)

Non-strictness

from the outside in, 

(  (   (   )  )  )

Strict

from the inside out

(  (   (   )  )  )



Non-terminating
Expressions (1F)

23 Young Won Lim
6/17/22

With non-strictness

the outer reduction may eliminate some of the sub-expressions 

and does not evaluate them

so "bottom" can be eliminated and don’t get be evaluated 

With strictness

if any sub-expression evaluates to bottom 

then the bottom will propagate outwards. 

https://wiki.haskell.org/Lazy_vs._non-strict

Non-strict vs. strict evaluation (2)

Non-strictness

from the outside in, 

(  (   (   )  )  )

Strict

from the inside out

(  (   (   )  )  )



Non-terminating
Expressions (1F)

24 Young Won Lim
6/17/22

only evaluating an expression when its results are needed 

(note the shift from "reduction" to "evaluation"). 

when the evaluation engine sees an expression 

it builds a thunk data structure containing 

whatever values are needed to evaluate the expression, 

plus a pointer to the expression itself. 

when the result is actually needed 

the evaluation engine calls the expression and 

then replaces the thunk with the result for future reference.

https://wiki.haskell.org/Lazy_vs._non-strict

Lazy vs. non-strict (1) 



Non-terminating
Expressions (1F)

25 Young Won Lim
6/17/22

Obviously there is a strong correspondence 

between a thunk and a partly-evaluated expression. 

in most cases the terms "lazy" and "non-strict" 

seem  to be synonyms. 

but not quite, for instance

imagine an evaluation engine 

on highly parallel hardware 

that fires off sub-expression evaluation eagerly, 

but then throws away results that are not needed. 

https://wiki.haskell.org/Lazy_vs._non-strict

Lazy vs. non-strict (2) 

With non-strictness

if you start from the outside and

work in, then some of the 

sub-expressions are eliminated 

by the outer reductions, 

so they don't get evaluated 

and you don't get "bottom". 

Non-strictness

from the outside in, 

(  (   (   )  )  )



Non-terminating
Expressions (1F)

26 Young Won Lim
6/17/22

In practice Haskell is not a purely lazy language: 

for instance pattern matching is usually strict 

So trying a pattern match forces evaluation to happen 

at least far enough to accept or reject the match. 

You can prepend a ~ in order 

to make pattern matches lazy

https://wiki.haskell.org/Lazy_vs._non-strict

Lazy vs. non-strict (3) 



Non-terminating
Expressions (1F)

27 Young Won Lim
6/17/22

The strictness analyzer also looks for cases 

where sub-expressions are always 

required by the outer expression, 

and converts those into eager evaluation. 

It can do this because the semantics 

(in terms of "bottom") don't change. 

Programmers can also use the seq primitive 

to force an expression to evaluate 

regardless of whether the result will ever be used. 

$! is defined in terms of seq. 

https://wiki.haskell.org/Lazy_vs._non-strict

Lazy vs. non-strict (4) 

Non-strictness

from the outside in, 

(  (   (   )  )  )

Strict

from the inside out

(  (   (   )  )  )

With non-strictness

reduction from the outside in 

then some sub-expressions 

are eliminated by the outer reductions, 

so they don't get evaluated and you 

don't get "bottom". 



Non-terminating
Expressions (1F)

28 Young Won Lim
6/17/22

Intuitively,

a specific function evaluation is terminating,

where the value of every argument is supplied

if the Haskell evaluation strategy needs 

finite number of steps to compute the result completely. 

http://termination-portal.org/wiki/Functional_Programming

Terminating expression 



Non-terminating
Expressions (1F)

29 Young Won Lim
6/17/22

the function zeros is considered non-terminating. 

zeros :: [Integer]

zeros = 0:  zeros

the evaluation does not stop 

when reaching a term headed by a constructor: 

it will continue evaluating the arguments of this constructor. 

http://termination-portal.org/wiki/Functional_Programming

Non-terminating expression 

RHS is to be evaluated

recursively, infinitely

zeros = 0:  zeros

 0:  zeros

0:  zeros

0:  zeros



Non-terminating
Expressions (1F)

30 Young Won Lim
6/17/22

repeat :: a -> [a]

it creates an infinite list where all items are the first argument 

take 4 (repeat 3)

[3,3,3,3]

take 6 (repeat 'A')

"AAAAAA"

take 6 (repeat "A")

["A","A","A","A","A","A"]

http://zvon.org/other/haskell/Outputprelude/repeat_f.html

repeat 



Non-terminating
Expressions (1F)

31 Young Won Lim
6/17/22

foldr will execute the callback function once 

for each element in the structure. 

The result will be passed 

to the next invocation of the callback. 

For the initial call to callback, 

previousValue will be initialValue, 

currentValue will be the last element of the structure. 

https://wiki.haskell.org/Data.Foldable.foldr

foldr (1)



Non-terminating
Expressions (1F)

32 Young Won Lim
6/17/22

foldr (+) 4 [0, 1, 2, 3]

-- alternatively written without syntactic sugar for lists:

foldr (+) 4 (0 : (1 : (2 : (3 : []))))

would be equivalent to:

0 + (1 + (2 + (3 + 4)))

PreviousValue = initValue = 4

CurrentValue = last value = 3

https://wiki.haskell.org/Data.Foldable.foldr

foldr (2)

0 + (1 + (2 + (3 + 4)))

0 + (1 + (2 + 7))

0 + (1 + 9)

0 + 10

prevcurr

prevcurr

prevcurr

prevcurr



Non-terminating
Expressions (1F)

33 Young Won Lim
6/17/22

foldr :: (a -> b -> b) -> b -> [a] -> b

it takes the second argument b

and the last item of the list a in [a]

and applies the function, (a -> b -> b)

then it takes the penultimate item from the end 

and the result, and so on. 

last but one in a series of things; second last.

http://zvon.org/other/haskell/Outputprelude/foldr_f.html

foldr (3)



Non-terminating
Expressions (1F)

34 Young Won Lim
6/17/22

foldr :: (a -> b -> b) -> b -> [a] -> b

Input: foldr (+) 5 [1,2,3,4] 1 + (2 + (3 + (4 + 5)))

Output: 15

Input: foldr (/) 2 [8,12,24,4]   8 / (12 / (24 / (4 / 2)))  

Output: 8.0

http://zvon.org/other/haskell/Outputprelude/foldr_f.html

foldr (4)

1 + (2 + (3 + (4 + 5)))

1 + (2 + (3 + 9))

1 + (2 + 12)

1 + 14

15

8 / (12 / (24 / (4 / 2)))

8 / (12 / (24 / 2))

8 / (12 / 12)

8 / 1

8



Non-terminating
Expressions (1F)

35 Young Won Lim
6/17/22

foldr (||) True $ repeat False -- never terminates

False || (False || (False || …  ))

|| True

foldr (||) False $ repeat True -- terminates with True

True || (True || (True || …  ))

|| False

`

https://stackoverflow.com/questions/7960543/why-does-this-haskell-code-not-terminate

Non-terminating expression (1)

Infinitely check if there is any True,

But never reach the end

There is at least one True,

Therefore return with true 



Non-terminating
Expressions (1F)

36 Young Won Lim
6/17/22

foldr (||) True $ repeat False -- never terminates

foldr (||) False $ repeat True -- terminates with True

The first expands to False || (False || (False || ...)), 

while the second expands to True || (True || (True || ...)). 

The second argument to foldr is a red herring - 

it occurs in the innermost application of ||, not the outermost, 

so it can never actually be reached.

https://stackoverflow.com/questions/7960543/why-does-this-haskell-code-not-terminate

Non-terminating expression (2)

The 2nd argument True is occurs 

In the innermost application of ||

The 2nd argument False is occurs 

In the innermost application of ||

A red herring is something that misleads or 

distracts from a relevant or important 

question.



Non-terminating
Expressions (1F)

37 Young Won Lim
6/17/22

bot                     = bot

bot is a non-terminating expression. 

Abstractly, we denote the value 

of a non-terminating expression 

as _|_ (read "bottom"). 

https://www.haskell.org/tutorial/functions.html

Non-terminating expression (2)

bot  = bot

 bot  = bot

   bot  = bot



Non-terminating
Expressions (1F)

38 Young Won Lim
6/17/22

Does function f terminate?

A) {Yes, Don’t know}

Typically look for decreasing size

● Primitive recursive

● Walther recursion

● Size change termination

https://ndmitchell.com/downloads/slides-catch-16_mar_2006.pdf

Termination Checkers



Non-terminating
Expressions (1F)

39 Young Won Lim
6/17/22

fib :: Integer -> Integer

fib(1) = 1

fib(2) = 1

fib(n) = fib(n-1) + fib(n-2)

fib(0) = ⊥NT

https://ndmitchell.com/downloads/slides-catch-16_mar_2006.pdf

Termination Checkers



Non-terminating
Expressions (1F)

40 Young Won Lim
6/17/22

● A function only stops terminating 

when  its given a value

● Perhaps the question is wrong:

Q) Given a function f and a value x,

Does f(x) terminate?

Q) Given a function f, for what values of x does

f(x) terminate?

https://ndmitchell.com/downloads/slides-catch-16_mar_2006.pdf

Values



Non-terminating
Expressions (1F)

41 Young Won Lim
6/17/22

fib n | n <= 0 =

error “bad programmer!”

● A function should never non-terminate

● It should give an helpful error message

● There may be a few exceptions

● But probably things that can’t be proved

● i.e. A Turing machine simulator

https://ndmitchell.com/downloads/slides-catch-16_mar_2006.pdf

Non-terminate



Non-terminating
Expressions (1F)

42 Young Won Lim
6/17/22

Haskell is:

● A functional programming language

● Lazy – not strict

● Only evaluates what is required

● Lazy allows:

● Infinite data structures

https://ndmitchell.com/downloads/slides-catch-16_mar_2006.pdf

Laziness



Non-terminating
Expressions (1F)

43 Young Won Lim
6/17/22

[1..] = [1,2,3,4,5,6, ...

● Not terminating

● But is productive

● Always another element

● Time to generate “next result” is always finite

https://ndmitchell.com/downloads/slides-catch-16_mar_2006.pdf

Productivity



Non-terminating
Expressions (1F)

44 Young Won Lim
6/17/22

The blame game

● last [1..] is NT⊥
● last is a useful function

● [1..] is a useful value

● Who is at fault?

● The caller of last

https://ndmitchell.com/downloads/slides-catch-16_mar_2006.pdf

Evaluation 



Non-terminating
Expressions (1F)

45 Young Won Lim
6/17/22

● All data/functions must be productive

● Can easily encode termination

isTerm :: [a] -> Bool

isTerm [] = True

isTerm (x:xs) = isTerm xs

https://ndmitchell.com/downloads/slides-catch-16_mar_2006.pdf

A lazy termination checker



Non-terminating
Expressions (1F)

46 Young Won Lim
6/17/22

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2]  https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

