Carry Skip Adder (5A)

Copyright (c) 2021 - 2013 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".
https://en.wikipedia.org/wiki/AND_gate
https://en.wikipedia.org/wiki/OR_gate
https://en.wikipedia.org/wiki/XO \bar{R} _gate
https://en.wikipedia.org/wiki/NAND_gate

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Carry Lookahead Adder

$$
\begin{aligned}
& \text { Carry Lookahead Adder } \\
& \begin{array}{l}
p_{i}=a_{i} \oplus b_{i} \\
g_{i}=a_{i} \wedge b_{i} \\
c_{1}=g_{0}+p_{0} \wedge c_{0} \\
c_{2}=g_{1}+p_{1} \wedge c_{1} \\
c_{3}=g_{2}+p_{2} \wedge c_{2} \\
c_{4}=g_{3}+p_{3} \wedge c_{3} \\
\quad \text { propagated carry } \\
\text { generated carray }
\end{array}
\end{aligned}
$$

Propagated and Generated Carries

FA with P \& G

Full adder with additional generate and propagate signals.

4-bit Full Adder with P and G

https://upload.wikimedia.org/wikiversity/en/1/18/
RCA.Note.H.1.20151215.pdf

FA with P \& G

For each operand input bit pair (a_{i}, b_{i})
the propagate-conditions $p_{i}=a_{i} \oplus b_{i}$ are determined using an XOR-Gate .
When all propagate-conditions are true,

$$
\begin{aligned}
s & =p_{n-1} \wedge p_{n-2} \wedge \cdots \wedge p_{1} \wedge p_{0}=p_{[0: n-1]} \\
& =\left(a_{n-1} \oplus b_{n-1}\right) \wedge\left(a_{n-2} \oplus b_{n-2}\right) \wedge \cdots \wedge\left(a_{1} \oplus b_{1}\right) \wedge\left(a_{0} \oplus b_{0}\right)
\end{aligned}
$$

then the carry-in bit c_{0} determines the carry-out bit.
c_{0} can be propagated to $\mathrm{c}_{\text {out }}$ only when $\mathrm{s}=1$

C_{0} propagation condition

c_{0} can be propagated to $c_{\text {out }}$ only when $s=1$

$$
\begin{aligned}
s= & p_{n-1} \wedge p_{n-2} \wedge \cdots \wedge p_{1} \wedge p_{0}=p_{[0: n-1]} \\
& =\left(a_{n-1} \oplus b_{n-1}\right) \wedge\left(a_{n-2} \oplus b_{n-2}\right) \wedge \cdots \wedge\left(a_{1} \oplus b_{1}\right) \wedge\left(a_{0} \oplus b_{0}\right)
\end{aligned}
$$

FA with P \& G

The n-bit-carry-skip adder consists of
a n-bit carry-ripple-chain,
a n-input AND-gate and
one multiplexer.
Each propagate bit p_{i} that is provided by the carry-ripple-chain is connected to the n-input AND-gate.
The resulting bit is used as the select bit of a multiplexer that switches either the last carry-bit c_{n} or the carry-in c_{0} to the carry-out signal $\mathrm{c}_{\text {out }}$

$$
s=p_{n-1} \wedge p_{n-2} \wedge \cdots \wedge p_{1} \wedge p_{0}=p_{[0: n-1]}
$$

4-bit Carry Skip Adder

Carry Skip Adder

Carry Skip Adder

Block Carry Skip Adder

Block-carry-skip adders are composed of a number of carry-skip adders. There are two types of block-carry-skip adders The two operands
$A=\left(a_{n-1}, a_{n-2}, \ldots, a_{1}, a_{0}\right)$ and $B=\left(b_{n-1}, b_{n-2}, \ldots, b_{1}, b_{0}\right)$ are split in k blocks of ($m_{k}, m_{k-1}, \ldots, m_{2}, m_{1}$) bits.

- Why are block-carry-skip-adders used?
- Should the block-size be constant or variable?
- Fixed block width vs. variable block width

Block Carry Skip Adder

Carry Skip Adder

Since the Cin-to-Cout represents the longest path in the ripple-carry-adder, an obvious attempt is to accelerate carry propagation through the adder.

This is accomplished by using Carry-Propagate p_{i} signals within a group of bits.

If all the p_{i} signals within the group are $p_{i}=1$, the condition exist for the carry to bypass the entire group:

$P=p_{i} \cdot p_{i+1} \cdot p_{i+2} \bullet \ldots \ldots \cdot p_{i+k-1}$

Carry Skip Adder

Carry Skip Adder

The Carry Skip Adder (CSKA) divides the words to be added into groups of equal size of \mathbf{k}-bits.

The basic structure of an N-bit Carry Skip Adder
Within the group, carry propagates in a ripple-carry fashion.
In addition, an AND gate is used
to form the group propagate signal P.
$P=p_{i} \cdot p_{i+1} \cdot p_{i+2} \bullet \ldots \ldots \cdot p_{i+k-1}$

If $P=1$ the condition exists for carry to bypass (skip) over the group

Carry Skip Adder

$$
\mathrm{N}=\mathrm{R} \cdot \mathrm{k}
$$

Carry Skip Adder

R -2 groups

Ripple carry

Any kill or generate condition results in divided (broken) critical paths
All FA's in R-2 groups must have the propagate condition

Carry Skip Adder

Ripple through k-1 bits

$$
(k-1) \Delta_{\mathrm{rca}}
$$

Skip carry

Carry Skip Adder

The maximal delay Δ of a Carry Skip Adder is encountered when carry is generated in the least-significant bit position,

- rippling through $k-1$ bit positions,
- skipping over $R-2=N / k-2$ groups in the middle,
- rippling to the $k-1$ bits of most significant group and
- being assimilated in the N-th bit position to produce the sum S_{N} :

$$
\begin{aligned}
\Delta_{\mathrm{CSA}} & =(\mathrm{k}-1) \Delta_{\mathrm{rca}}+(\mathrm{R}-2) \Delta_{\mathrm{SKIP}}+(\mathrm{k}-1) \Delta_{\mathrm{rca}} \\
& =2(\mathrm{k}-1) \Delta_{\mathrm{rca}}+(\mathrm{R}-2) \Delta_{\mathrm{SKIP}} \\
& =2(\mathrm{k}-1) \Delta_{\mathrm{rca}}+(\mathrm{N} / \mathrm{k}-2) \Delta_{\mathrm{SKIP}}
\end{aligned}
$$

Carry Skip Adder

$$
\begin{aligned}
\Delta_{\mathrm{CSA}} & =(\mathrm{k}-1) \Delta_{\mathrm{rca}}+(\mathrm{R}-2) \Delta_{\mathrm{SKIP}}+(\mathrm{k}-1) \Delta_{\mathrm{rca}} \\
& =2(\mathrm{k}-1) \Delta_{\mathrm{rca}}+(\mathrm{R}-2) \Delta_{\mathrm{SKIP}} \\
& =2(\mathrm{k}-1) \Delta_{\mathrm{rca}}+(\mathrm{N} / \mathrm{k}-2) \Delta_{\mathrm{SKIP}}
\end{aligned}
$$

Carry Skip Adder is faster than RCA at the expense of a few relatively simple modifications.

$$
\mathrm{N}=\mathrm{R} \cdot \mathrm{k}
$$

The delay is still linearly dependent on the size of the adder N , however this linear dependence is reduced by a factor of $1 / k$

Oklobdzija: High-Speed VLSI arithmetic units : adders and multipliers

Design C (9) - When Cout1 = 1

Carry Skip Adder

If an arbitrary block generated a carry by itself, The carry will always propagate to the next block However, if the second block generates a carry itself, Or kill the carry, then that is the end of the critical path

If the second block propagates the carry, then we see The advantage of the CSA architecture
https::/electronics.stackexchange.com/questions/21251/critical-path-for-carry-skip-adder

Carry Skip Adder

X	Y		
0	0	K	Kill $(=\overline{\mathrm{PG}})$
0	1	P	Propagate
1	0	P	Propagate
1	1	G	Generate

Unless the two FA's are in propagate mode, the transition of Cin does not affect the transition of Cout

Critical path - all FA's in propagate mode
Broken paths for any FA in other mode - kill mode, generate mode
https::/electronics.stackexchange.com/questions/21251/critical-path-for-carry-skip-adder

Carry Skip Adder

X	Y		
0	0	K	Kill $(=\overline{\mathrm{PG}})$
0	1	P	Propagate
1	0	P	Propagate
1	1	G	Generate

1

1

\mathbf{K}	\mathbf{K}	0
\mathbf{K}	\mathbf{K}	1
\mathbf{K}	\mathbf{P}	0
\mathbf{K}	\mathbf{P}	1
\mathbf{K}	\mathbf{G}	0
K	\mathbf{G}	1
\mathbf{P}	\mathbf{K}	0
\mathbf{P}	\mathbf{K}	1
\mathbf{P}	\mathbf{P}	0
\mathbf{P}	\mathbf{P}	1
\mathbf{P}	\mathbf{G}	0
\mathbf{P}	\mathbf{G}	1
\mathbf{G}	\mathbf{K}	0
G	\mathbf{K}	1
\mathbf{G}	\mathbf{P}	0
G	\mathbf{P}	1
\mathbf{G}	\mathbf{G}	0
\mathbf{G}	\mathbf{G}	1

Cases when FA1 in the Kill mode

Carry Skip Adder

Cases when FA1 in the Kill mode

Cases when FA1 in the Propagate mode

Carry Skip Adder

Cases when FA1 in the Generate mode

Carry Skip Adder

Cases for Cout1 = 1

Cases for Cout1 $=0$

X	Y		
0	0	K	Kill (=$\overline{\mathrm{PG})}$
0	1	P	Propagate
1	0	P	Propagate
1	1	G	Generate

References

[1] en.wikipedia.org
[2] Parhami, "Computer Arithmetic Algorithms and Hardware Designs"

