# Angle Recoding CORDIC 2. Wu

20180521

Copyright (c) 2015 - 2016 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Extended EAS (EEAS) - Wu

more flexible way of decomposing the rotation angle

better the number of iterations the error performance

$$S_{EAS} = \{ (0 \cdot tom^{-1}(2^{-1})) : 0 \in \{+1, 0, -1\}, r \in \{1, 2, ..., n-1\} \}$$

$$S_{EEAS} = \left\{ (0_{1} \cdot ton^{-1}(x^{-r_{1}}) + 0_{2} \cdot ton^{-1}(x^{-r_{2}})) : 0_{1}, 0_{3} \in \{+1, 0_{1}, -1\}, r_{1}, r_{2} \in \{1, 2, ..., n-1\} \right\}$$

The pse do -rotation

for i-th micro rotations

$$\chi_{i+1} = \chi_i - [\sigma_{r_i}(i) \cdot 2^{-r_i(i)} + \sigma_{r_i}(i) \cdot 2^{-r_i(i)}] y_i$$

$$y_{i+1} = y_i + [\sigma_{r_i}(i) \cdot 2^{-r_i(i)} + \sigma_{r_i}(i) \cdot 2^{-r_i(i)}] x_i$$

The pseudo-rotated vector [x km, y km]
after km (the required number of micro-votations)

Needs to be scaled by a factor 
$$K = T Ki$$

$$Ki = \left[ 1 + \left( \sigma_{1}(i) \cdot 2^{-r_{1}(i)} + \sigma_{2}(i) \cdot 2^{-r_{2}(i)} \right)^{2} \right]^{-\frac{1}{2}}$$

$$\widetilde{\chi}_{i+1} = \widetilde{\chi}_i - [k_1(i) \cdot 2^{-s_1(i)} + k_2(i) \cdot 2^{-s_1(i)}] \widetilde{y}_i 
\widetilde{y}_{i+1} = \widetilde{y}_i + [k_1(i) \cdot 2^{-s_1(i)} + k_2(i) \cdot 2^{-s_2(i)}] \widetilde{\chi}_i$$

$$\widetilde{\chi}_{0} = \chi_{R_{m}}$$
 $k_{1}, k_{2} \in \{-1, 0, 1\}$ 
 $\widetilde{\chi}_{3} = \chi_{R_{m}}$ 
 $S_{1}, S_{2} \in \{1, 2, ..., n-1\}$ 

| [21] CS. Wu, AY. Wu, and CH. Lin, "A high-performance/low-latency                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| vector rotational CORDIC architecture based on extended elementary angle set and trellis-based searching schemes," <i>IEEE Trans. Circuits Syst. II: Anal. Digital Signal Process.</i> , vol. 50, no. 9, pp. 589–601, Sep. 2003. |
| IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 10, OCTOBER 2002                                                                                                                  |
| A Unified View for Vector Rotational CORDIC                                                                                                                                                                                      |
| Algorithms and Architectures Based on Angle —————                                                                                                                                                                                |
| Quantization Approach ————————————————————————————————————                                                                                                                                                                       |
| An-Yeu Wu and Cheng-Shing Wu                                                                                                                                                                                                     |
| •                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                  |

AR: to approximate o

with the combination

of selected angle elements

from a pre-defined EAS

(Elementary Angle Set)

EAS: au possible values of O(j)

EAS  $\hat{S}_1 = \{ tan^{-1} (x^* \cdot 2^{-s^*}) : x^* \in \{1, 0, +1\}, \\ s^* \in \{0, 1, ..., N+1\} \}$ 

EAS \$1 consists of tan-1 (Single Signed power of two)

tan-1 (Single SPT)

tan-1 (d\* ·2-5\*)

# SPT-based digital filter dusign to increase the <u>coefficient resolution</u> 7 imploy more SPT terms to represent filter (oefficients [12] H. Samueli, "An improved search algorithm for the design of multiplierless FIR filters with power-of-two coefficients," IEEE Trans. Circuits Syst., vol. 36, pp. 1044-1047, July 1989. [13] Y. C. Lim, R. Yang, D. Li, and J. Song, "Signed power-of-two term allocation scheme for the design of digital filters," IEEE Trans. Circuits Syst. II, vol. 46, pp. 577-584, May 1999. EAS S. (onsists of tan-1 (Single Signed power of two) tan-1 (Single SPT) tan-1 (d\* 2<sup>-5\*</sup>)

EAS 
$$3_2$$
 consists of  $tan^{-1}(two signed power of two)  $tan^{-1}(two spt)$   $tan^{-1}(d_0^* \cdot 2^{-so} + d_1^* \cdot 2^{-st})$$ 

Two Signed - Power - of - Two terms  $S_2 = \{ tan^+ (x_0^* \cdot 2^{-s_0^*} + x_1^* \cdot 2^{-s_1^*}) :$  $d_{0}^{*}, d_{1}^{*} \in \{-1, 0, +1\}$   $S_{0}^{*}, S_{1}^{*} \in \{0, 1, \dots, W-1\}$ 

```
1 = 2 -0
                                                          tan+(2-0)
         \frac{1}{2} = 2^{-1}
\frac{1}{4} = 2^{-2}
                                                          tan+(2-1)
 0.5
                                                           tan+ (2-2)
 5٤.٥
 52
          |+| = 2^{-0} + 2^{-0} \pm tan^{-1}(2^{-0} + 2^{-0})
        \begin{aligned} |+\frac{1}{2} &= 2^{-0} + 2^{-1} & \pm \tan^{-1}(2^{-0} + 2^{-1}) \\ |+\frac{1}{4} &= 2^{-0} + 2^{-2} & \pm \tan^{-1}(2^{-0} + 2^{-2}) \\ |+\frac{1}{2} &= 2^{-1} & \pm \tan^{-1}(2^{-0}) \\ \pm \frac{1}{2} &= 2^{-1} & \pm \tan^{-1}(2^{-1} + 2^{-2}) \\ \pm \frac{1}{2} &= 2^{-1} & \pm \tan^{-1}(2^{-1}) \end{aligned}
0か 1+4 = 2-1 + 2-2
          \frac{1}{2} = 2^{-1}
\frac{1}{4} = 2^{-2}
٥.5
                                                        ± tan+ (2-2)
 0.25
                       - | 2 | |
- | 05 | -5 | 05 €
                                                                                                                       05 0.75
0.5
 0.5
                                                                      0.25 0.75
                               1.25
                                                5٤.٥
 ځ.۵
                                                                                           \{0, 1, 2\} = \{0, 1, W-1\}
                          2^{-0}, 2^{-1}, 2^{-2}
                                                                                              W=3
                           S_0^*, S_1^* \in \{0, 1, 2\}
                           2^{5}, 2^{5} \in \{2^{5}, 2^{4}, 2^{1}\}
```

the size of the set Sz increases exponentially

$$\theta_i = \tan^{-1} \left( \propto_0 (i) \cdot 2^{-S_0(i)} + \propto_1 (i) \cdot 2^{-S_1(i)} \right)$$

Rm: the number of the subangle NA

$$S_{2} = \left\{ tan^{+} \left( \propto_{0}^{*} \cdot 2^{-5^{*}} + \propto_{1}^{*} \cdot 2^{-5^{*}} \right) : \\ \alpha_{0}^{*}, \alpha_{1}^{*} \in \left\{ -1, 0, +1 \right\} \right.$$

$$S_{0}^{*}, S_{1}^{*} \in \left\{ 0, 1, ..., W-1 \right\} \right\}$$

the optimization problem of the EEAS-based CORDIC algorithm

given 0 and Rm

find 
$$\alpha_0(j)$$
,  $\alpha_1(j)$ ,  $S_0(j)$ , and  $S_1(j)$ 

the combination of elementary angles

from EEAS  $\beta_2$ 

Minimize the angle quantization error

$$\left| \underbrace{\xi_{\mathsf{m}}, \mathsf{EEAS}} \right| \stackrel{\triangle}{=} \underbrace{\theta - \sum_{j=0}^{\mathsf{km-1}} \mathsf{tam^{-1}} \left( \alpha_{\mathsf{o}}(\mathsf{j}) \, 2^{-\mathsf{s}_{\mathsf{o}}(\mathsf{j})} + \alpha_{\mathsf{i}}(\mathsf{j}) \, 2^{-\mathsf{s}_{\mathsf{i}}(\mathsf{j})} \right)}_{\mathsf{j=0}}$$

$$\begin{bmatrix} \chi(j+1) \\ y(j+1) \end{bmatrix} = \begin{bmatrix} 1 & \alpha_{o}(j) 2^{-S_{o}(j)} + \alpha_{1}(j) 2^{-S_{i}(j)} \\ \alpha_{o}(j) 2^{-S_{o}(j)} + \alpha_{1}(j) 2^{-S_{i}(j)} \end{bmatrix} \begin{bmatrix} \chi(j) \\ \chi(j) \end{bmatrix}$$

$$\begin{bmatrix} \chi_f \\ y_f \end{bmatrix} = P \begin{bmatrix} \chi(R_m) \\ y(R_m) \end{bmatrix} = \frac{1}{\prod_{j=0}^{R_1-1} \sqrt{1 + \left[\alpha(a_j) \cdot 2^{-S_0(a_j)} + \alpha(a_j) \cdot 2^{-S_1(a_j)}\right]^2}} \begin{bmatrix} \chi(R_m) \\ y(R_m) \end{bmatrix}$$

Micro Potation procedure the scaling operation

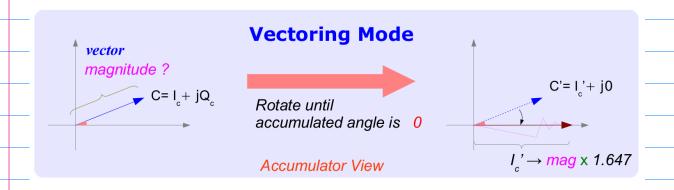
4 additions

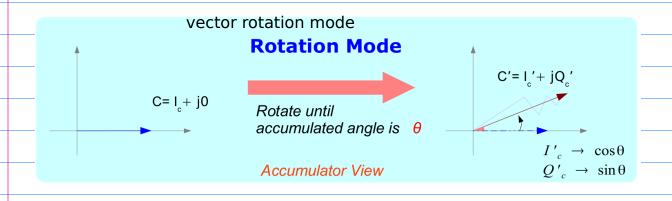
increased hardware reduced iteration steps

#### MVR (Modified Vector Rotation)

- 1) Repeat of Elementary Angles 0i, oi
- 2) fixed total micro-rotation Number Rm

- X Vector Rotation Mode
- \* and the rotation angles are known in advance





#### Modified Vector Rotational MUR CORDIC

- reduce the iteration number
- maintaining the SQNR performance
- modifying the basic microrotation procedure

#### Three Sewiching Algorithm

- The selective prerotation
- 1 the selective scaling
- 3 iteration trade off scheme

# Angle Quantization

the angle quantization error

$$\xi_{\mathsf{m}} \triangleq \varrho - \sum_{i=0}^{N_{\mathsf{A}}-1} \theta_{i}$$

$$N_A$$
 the number of subangles  $\theta_0$ ,  $\theta_1$ , ...,  $\theta_{N_A-1}$ 

$$0 = 0_0 + 0_1 + \cdots + 0_{N_A-1} + \xi_m$$

# AQ Process : 2 Design Issues

|   | need | to | determine | the | sub-angles | 0: |
|---|------|----|-----------|-----|------------|----|
| ~ | •    | •  |           |     |            |    |

② select 1 combine subangles

to minimize the angle quantization angle 5 m

## CSD (Canonical Signed Digit) Quantization

digital filter de signs

coefficients one recoded

in terms of SPT (Signed Power of Two) terms

multiplication can be easily realized with Shift-and-add operations

 $f_{12} = (-0.156249)_{10} \Rightarrow (0.07011)_{2}$ W=8, 3 non-zero digits

- O CSD quantization decomposes

  (oefficients into several SPT terms

  (sub-coefficients)
- 2 the multiplication of a coefficient

  can be reformed

  through the combination of

  the non-zero SPT Sub-coefficients

guantite the rotation angle O

decompose the votation angle 0 into several sub-angles dis

the rotational operation of each Oi Should be easily realized

If each Oi can be realized

Using only shift-and-add operations

the rotation of 0 can be performed through successive applications of Sub-angle rotations

in a cost-effective way

| approximation | (oefficient                                        | Rotation angle                                                |
|---------------|----------------------------------------------------|---------------------------------------------------------------|
| target        | hi                                                 | 9                                                             |
| Basic         | Non-zero digit                                     | Sub-angle                                                     |
| Element       | 2-i                                                | $a(i) = \tan^{-1}(2^{-i})$                                    |
| Basic         | Shift-and-add                                      | 2 shift-and-add                                               |
| Operation     | operation                                          | Operations                                                    |
| Approximation | ,<br>Nn-l                                          | <u>'</u>                                                      |
| Equation      | $hi \approx \sum_{j=0}^{N_0-1} g_j \cdot 2^{-d_j}$ | $0 \approx \sum_{j=0}^{k_{m-1}} \alpha(j) \cdot \alpha(s(j))$ |
| -             | 9=0                                                | j=0 ,                                                         |
|               | gj e {-1,0,+1}                                     |                                                               |
|               | d; e { 0,1,, w-1}                                  |                                                               |
|               |                                                    |                                                               |
|               | No= the number of                                  | Ng= the number of                                             |
|               | Non-Zero digits                                    | Sub-angles                                                    |
|               |                                                    |                                                               |

| Ve c 1     | tor    | Rotation | Corpic | Family |  |
|------------|--------|----------|--------|--------|--|
| <b>6</b>   | Conven | tional   | CORDIC |        |  |
| 0          | AR     |          |        |        |  |
| <b>2</b> 1 | MVR    |          |        |        |  |
| 3          | EEAS   |          |        |        |  |
|            |        |          |        |        |  |
|            |        |          |        |        |  |
|            |        |          |        |        |  |
|            |        |          |        |        |  |
|            |        |          |        |        |  |
|            |        |          |        |        |  |
|            |        |          |        |        |  |
|            |        |          |        |        |  |
|            |        |          |        |        |  |
|            |        |          |        |        |  |
|            |        |          |        |        |  |
|            |        |          |        |        |  |
|            |        |          |        |        |  |
| 1          |        |          |        |        |  |

# 6 Conventional CORPIC

elementary angle  $a(i) = tan^{-1}(2^{-i})$ 

the number of elementary angles N

the rotation sequence  $\mu(i) = \{-1, +1\}$ 

tl, -1, -1, +1, +1, .....

the i-the rotation angle aci)

the W-bit word length

the iteration number  $N \leq W$ 

the angle quantization error

 $\xi_{m, (orpic)} \equiv \theta - \sum_{i=0}^{NH} \mu(i) \alpha(i)$ 

# (1) AR [Hu]

skip certain micro rotations

the rotation sequence  $\mu(i) = \{-1, 0, +1\}$ 

desire to minimize

$$\sum_{i=0}^{N} |\mu(i)|$$

so that the total number of Corpic iterations can be minimized

#### Angle Recoding - Multiplier Recoding

angle recoding method for efficient implementation of the CORDIC algorithm Hu & Naganathan, ISCAS 89

Greedy algorithm

$$\theta(0) = \theta$$
,  $\{\mu(i) = 0, 0 \le i \le N-1\}$ ,  $k=0$ .

Choose ik, 0≤ik≤N-1

$$|O(k)| - a(ik)| = Min |O(k)| - a(ik)$$

$$O(k+1) = O(k) - \mu(ik) \alpha(ik)$$

try to approach the target rotation angle O Step by Step

decisions are made in each step by choosing the best combination of a(i) a(s(i))

So as to minimize  $|\xi_m|$ 

 $\alpha(i)$ ,  $\alpha(i)$  are determined such that the error function is minimized  $J(i) = |\theta(i) - \alpha(i)\alpha(s(i))|$ 

$$0(i) = 0 - \sum_{m=0}^{i-1} \alpha(m) \alpha(s(m))$$

terminated if no further improvement can be found  $J(i) \geqslant J(i-1)$ 

or  $\alpha(Rm-1)$  and  $\beta(Rm-1)$  are determined at the end

$$\xi_{m, corpic} = \theta - \sum_{i=0}^{N-1} \mu(i) \alpha(i) \qquad \mu(i) = \{-1, 0, +1\} \\
= \theta - \sum_{j=0}^{N'} \widetilde{\Theta}(j) \\
= N' = \sum_{i=0}^{N-1} |\mu(i)| \{ \{+1\}, [0], [+1] \}$$

the effective iteration number N'

S(j) the rotational sequence

determines the micro-rotation angle in the j-th iteration

in dex 
$$0,1,...,N'$$
 (reduced number)

$$\mu(i) = \begin{cases} \mu(s(i)) & i = s(i) \\ 0 & i \neq s(i) - reduced in Alx \end{cases}$$

er

$$i = 0, 1, 2, 3, \dots, N-1$$

$$S(j) = 0, 1, 2, 3, \dots, N+1 \quad \text{rotational Sequence}$$

$$X(j) = 1, 0, 0, +1, \dots, -1 \quad \text{directional Sequence}$$

$$j = 0, -, -, 1, \dots, N+1 \quad \text{effective jteration number}$$

$$N' = N-2$$

the j-th micro-rotation of a (scj))

elementary angle

$$A(i) = \tan^{7}(2^{-i})$$
  
 $A(sij) = \tan^{7}(2^{-sij})$ 

$$\alpha(j)\alpha(s(j)) = \alpha(j) \tan^{-1}(2^{-s(j)})$$

$$\alpha(i) \in \{1,+1\}$$

$$\Leftrightarrow$$
  $\mu$ (i)  $\alpha$ (l)

$$J(\lambda) \in \{-1, 0, +1\}$$

$$\xi_{m, corpic} = \theta - \sum_{i=0}^{N-1} \mu(i) \alpha(i)$$

$$= \theta - \left[ \sum_{j=0}^{N'} \widetilde{\theta}(j) \right]$$

$$= \theta - \left[ \sum_{j=0}^{N'} \tan^{-1} \left( \alpha(j) \cdot 2^{-s(j)} \right) \right] \alpha(j) \in \{+, +1\}$$

$$\widetilde{\Theta}(j) = \alpha(j) \tan^{-1}(2^{-s(j)}) 
= \tan^{-1}(\alpha(j) \cdot 2^{-s(j)})$$

$$S_1 = \{ tam^{-1} (\alpha \cdot 2^{-S}) | \alpha \in \{1, 0, +1\}, S \in \{0, 1, 2, \dots N-1\} \}$$

#### 2 MVR (Modified Vector Rotational)

two modifications

- 1) repeatition of elementary angles
  - each micro-rotation of elementary angle can be performed repeatedly
    - more possible combinations
    - smaller &m
- 2 confinement of total micro-rotation number

(on fine the iteration number in the micro-rotation phase to Rm (Rm << W)

to the number of non-zero digit

No in CSD recoding scheme

$$\xi_{m,MVR} \triangleq \theta - \sum_{i=0}^{Rm-1} \alpha(i) \alpha(s(i))$$

the rotational sequence  $S(i) \in \{0, 1, \dots, W-1\}$ 

the micro-rotation angle in the i-th iteration

the directional sequence  $\alpha(i) \in \{-1, 0, +1\}$ 

the direction of the i-th micro-rotation of a (S(i))

$$\alpha(i)$$
 () (((i)) =  $\tilde{\theta}$  ( $i$ )

$$\xi_{m,MVR} \triangleq \Theta - \sum_{j=0}^{Rm-1} \alpha(j) \alpha(S(j))$$

the rotational sequence S(j)

$$j = 0, |, 2, \dots, |_{m-1}$$
  
 $S(j) \in \{0, 1, \dots, |W-1\}$ 

determines the micro-rotation angle  $\alpha(S(\frac{1}{2}))$ in the j-th j-theretion

the directional sequence 
$$(3)$$
  $(3)$   $(4)$   $(4)$   $(5)$   $(4)$   $(4)$ 

controls the direction of the j-th micro-rotation of a (S(j))

$$\alpha(i) \alpha(s(i)) = \widetilde{\theta}(i)$$

$$i = 0, 1, 2, 3, \dots, W-1$$
 $S(i) = 0, 1, 2, 3, \dots, W-1$  rotational Sequence

 $S(i) = 1, 0, 0, +1, \dots, -1$  directional Sequence

 $S(i) = 1, 0, 0, +1, \dots, RM-1$  effective iteration number

 $S(i) = 1, 0, 0, 0, +1, \dots, RM-1$ 

sub-angle 
$$(\alpha(i) \alpha(s(i))) \sim \widehat{\theta}(i)$$

$$\xi_{\mathsf{m,AR}} = \Theta - \left[ \sum_{j=0}^{\mathsf{N}^{\mathsf{I}-\mathsf{J}}} \mathsf{ton}^{\mathsf{T}} \left( \alpha(j) \cdot 2^{-\mathsf{S}(j)} \right) \right]$$

$$= \Theta - \left[ \sum_{j=0}^{\mathsf{N}^{\mathsf{I}-\mathsf{J}}} \widehat{\Theta} (j) \right] , \qquad \widehat{\Theta} (j) = \mathsf{ton}^{\mathsf{T}} \left( \alpha(j) \cdot 2^{-\mathsf{S}(j)} \right)$$

$$N' riangleq \sum_{j=0}^{N-1} |\mu(j)|$$
 the effective iteration number

The major difference

- 1) the total number of Sub-angles Na

  the total iteration number

  in the micro-votation phase
  is kept fixed to a pre-defined value of Rm

  Na = Rm
- 2) the sub-angle  $\Theta_i$  (orresponds to  $\alpha(j) \alpha(s(j))$   $\Theta_j = \alpha(j) \alpha(s(j)) = \widehat{\Theta}_j$

# Optimization Problem

EAS point of view

Given 0, find the combination of Rm elementary angles from EAS S, , such that the angle quantitation error | Em, nur | is minimized.

Semi-greedy algorithm

traduoffs between computational complexities

and performance

key issue in the MUR-corpic

is to find the best sequences of

s(i) and x(i) to minimize | \(\frac{5}{m}\)|

subject to the constraint that

the total iteration number is confined to Rm

- 1) Greedy Algorithm
- 2) Exhaustive Algorithm
- 3) Semigreedy Algorithm

#### 1) Greedy Algorithm

try to approach the target rotation angle,  $\Theta$ , step by step in each step, decisions are made on  $\alpha(i)$  and s(i) by choosing the best combination of  $\alpha(i)$  also so as to minimize  $|E_m|$ 

 $\alpha(i)$  and s(i) are determined such that the error function  $J(i) = | \Theta(i) - \alpha(i) | \alpha(s(i)) |$  is minimited

O(1): the <u>residue</u> angle in the i-th step

$$O(i) = O - \sum_{m=0}^{i-1} \alpha(m) \alpha(s(m))$$

the searching is terminated

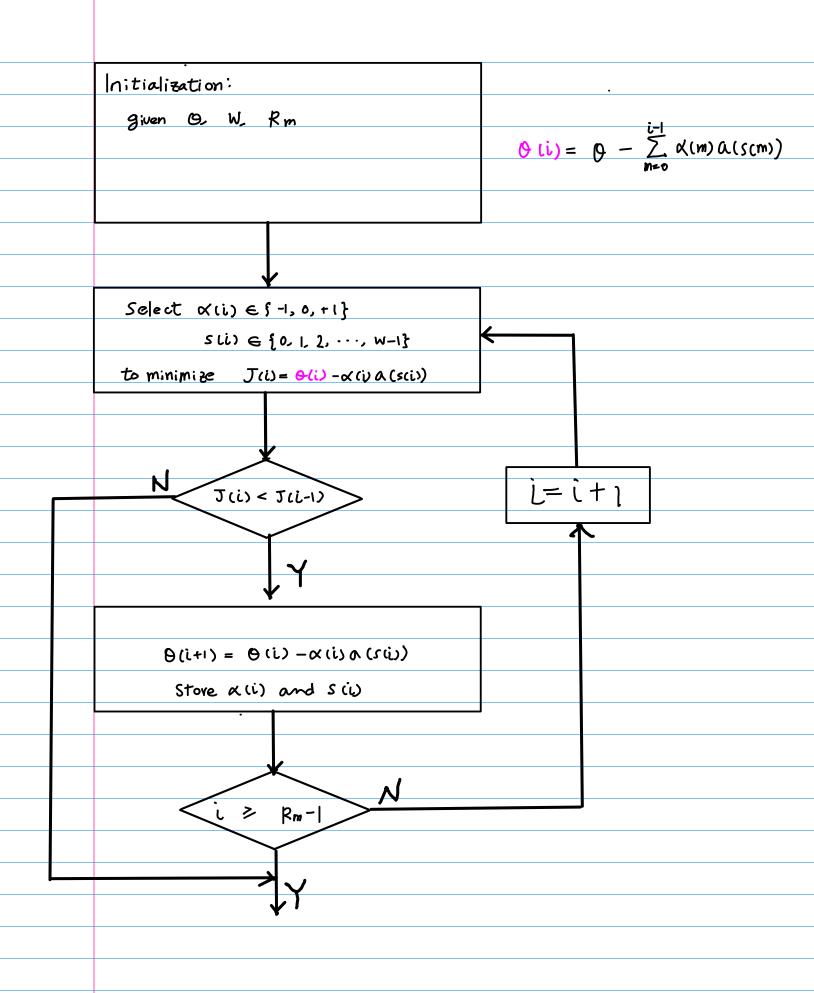
if no further improvements can be found  $J(i) \geqslant J(i-1)$ 

X(Rm-1) and S(Rm-1) are determined at the end of the searching

the greedy algorithm terminates

Only when the residue angle error

cannot be further reduced.



## 2) Exhaustive Algorithm

Search for the entire solution space

all possible combinations of

$$R_{n-1}$$
 $\sum_{i=0}^{\infty} \alpha(i) \alpha(s(i))$ 

in a single step

decisions for 
$$\propto (i)$$
 and  $s(i)$ ,  $0 \le i \le Rm-1$   
by minimizing the error function

$$\mathcal{J} = \left| 0 - \sum_{i=0}^{R_m - 1} \alpha(i) \, \alpha(s(i)) \right|$$

global optimal solution

#### Initialization: given $\Theta$ , W, R mLet $\Theta(0) = \Theta$ , $\dot{L} = 0$

Select 
$$\alpha(i) \in \{-1, 0, +1\}$$
  
 $s(i) \in \{0, 1, 2, \dots, w-1\}$   
for  $0 \le i \le R_m - 1$   
to minimize  $J(i) = \frac{R_m - 1}{i = 0} \alpha(i) \alpha(s(i))$ 

$$(3. W) \cdot (3. W) \cdots (3. W)$$

$$= 3^{Rm} \cdot W^{Rm}$$

Store & (i) and S (i) for O≤i≤Rm-1

# 3) Semi-greedy Algorithm

a combination of greedy and exhaustive algorithm

the search space of α(i) and s(i) for 0≤i≤Rm-|

are divided into several sections

with D iterations as a segment

block length block

the segmentation scheme

total iteration (Rm)



decision of 
$$\alpha(k)$$
 and  $\beta(k)$  for  $iD \leq k \leq liti)D-1$ 

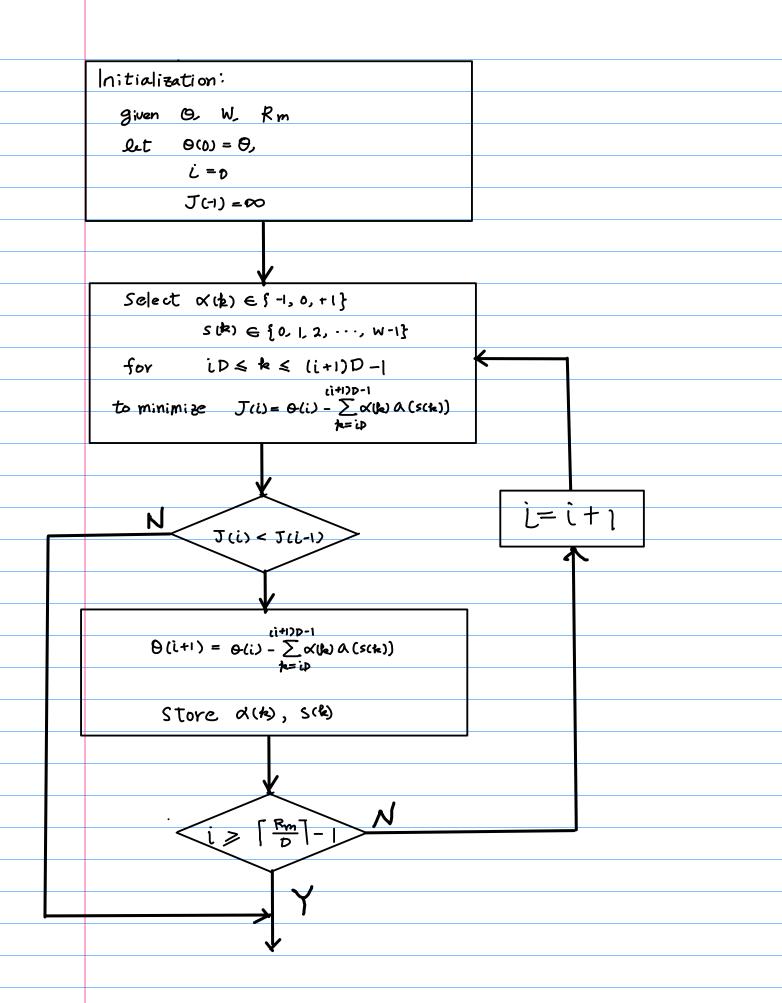
minimizes 
$$J = \frac{(i+1)D-1}{b(i) - \sum_{k=i}^{n} o(k) o(s(k))}$$

where 
$$\frac{0(i)}{m=0} = \frac{i-1}{m=0} \left[ \frac{(m+1)D-1}{\sum_{k=mD}} o(k) o(s(k)) \right]$$

the residue angle in the i-th step

$$S = \left\lceil \frac{R_m}{D} \right\rceil$$

$$\frac{0(i)}{b} = 0 - \left[ \sum_{k=0:D}^{1-D-1} \alpha(k) \alpha(s(k)) + \sum_{k=1:D}^{2\cdot D-1} \alpha(k) \alpha(s(k)) + \dots + \sum_{k=2:D}^{5\cdot D-1} \alpha(k) \alpha(s(k)) \right]$$



$$\int_{2} = \left\{ tan^{-1} \left( x_{0}^{*} \cdot 2^{-s^{*}} + x_{1}^{*} \cdot 2^{-s^{*}} \right) : \\ x_{0}^{*}, x_{1}^{*} \in \left\{ 1, 0, +1 \right\}, \quad S_{0}^{*}, S_{1}^{*} \in \left\{ 0, 1, \cdots, W_{1} \right\} \right\}$$

$$O_i = \tan^{-1}(\alpha_{\circ}(j) \cdot 2^{-S_0(j)} + \alpha_{\circ}(j) \cdot 2^{-S_1(j)})$$

$$\theta = \sum_{j=0}^{Rm-1} \tan^{-1}(\alpha_{\circ}(j) \cdot 2^{-S_{0}(j)} + \alpha_{\circ}(j) \cdot 2^{-S_{1}(j)})$$

# Generalized EEAS Scheme

$$\int_{\mathbf{d}} = \left\{ tan^{-1} \left( x_{0}^{*} \cdot 2^{-s_{0}^{*}} + x_{1}^{*} \cdot 2^{-s_{1}^{*}} \right) : x_{d-1}^{*} \cdot 2^{-s_{d-1}^{*}} \right) : x_{d-1}^{*} \cdot x_{$$