
Young Won Lim
3/12/22

Exception Programming

Exception Programming 2 Young Won Lim
3/12/22

 Copyright (c) 2022 - 2014 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Exception Programming 3 Young Won Lim
3/12/22

(9) Entering and returning exception handler

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

Return has to be done from ARM state.

no Thumb instruction to copy SPSR back into CPSR

v6 vectored interrupts will take the IRQ handler address directly
from the VIC (Vectored Interrupt Controller)
via the IRQADDR input to the core
and start executing from that address

Also the 1156 can take exceptions written in Thumb-2 code
in Thumb state, by setting the TE bit of cp15 register 1.
This is set on reset by the TEINIT signal to the core.

Exception Programming 4 Young Won Lim
3/12/22

Exception Return Instructions

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

To return from an exception
● Use a data processing instruction
● The actual instruction used depends

on the exception being handled

● With the S bit set
● With the PC as the destination register

● In privileged modes this

not only updates the PC
but also copies the SPSR into the CPSR

● For SWI and Undefined Instruction handlers
MOVS pc,lr

● For FIQ, IRQ and Prefetch Abort handlers

 SUBS pc,lr,#4

● For Data Abort handlers
 SUBS pc,lr,#8

● LDM with ^ qualifier can also be used
if LR adjusted before being stacked

 LDMFD sp!,{pc}^

● v6 cores also have RFE - more later

Exception Programming 5 Young Won Lim
3/12/22

Exception Return

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

When returning from an exception,
can do both of the required actions
using a single data processing instruction with the S flag set,
and the PC as destination register

In privileged modes this not only updates the PC
but also copies the SPSR into the CPSR
However the actual instruction depends
on which exception is being handled.

Also possible to use a Load Multiple instruction (using the ^ qualifier)
to return if in a privileged mode with the PC as the destination.

Exception Programming 6 Young Won Lim
3/12/22

(9) Entering and returning exception handler

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

Entering exception handler
1. Save the address of the next instruction

in the appropriate Link Register LR.
2. Copy CPSR to the SPSR of new mode.
3. Change the mode by modifying bits in CPSR.
4. Fetch next instruction from the vector table.

Leaving exception handler
1. Move (LR - offset) to the PC.
2. Copy SPSR back to CPSR, this will automatically changes

the mode back to the previous one.
3. Clear the interrupt disable flags (if they were set)

Exception Returning Address
Reset None
Data Abort LR - 8
FIQ, IRQ, prefetch Abort LR - 4
SWI, Undefined Instruction LR

CPSR CPSR CPSR CPSR CPSR CPSR CPSR

SPSR_fiq SPSR_irq SPSR_svc SPSR_abt SPSR_und6 control registers

Exception Programming 7 Young Won Lim
3/12/22

Entering and exiting an exception handler

http://classweb.ece.umd.edu/enee447.S2019/ARM-Documentation/ARM-Interrupts-3.pdf

● Preserve the address of the next instruction.
● Copy CPSR to the appropriate SPSR

one of the banked registers for each mode of operation.
● Force the CPSR mode bits to a value depending on the raised exception.
● Force the PC to fetch the next instruction from the exception vector table.
● Now the handler is running in the mode associated with the raised exception.
● When handler is done, the CPSR is restored from the saved SPSR.
● PC is updated with the value of (LR - offset) and

the offset value depends on the type of the exception.

Exception Programming 8 Young Won Lim
3/12/22

Returning after exception handling

http://www2.unb.ca/~owen/courses/2253-2017/slides/08-interrupts.pdf

When the handler has finished its task,
it returns to the caller (in software)

● The mode needs to be put back to its pre-interrupt value.
And the PC needs to be put back to the correct instruction.
➔ to the instruction that had the exception (and did not successfully finish) or
➔ to the next instruction, depending on the kind of an exception

● Change PC
➔ SUBS PC, LR, #4
➔ SUBS PC, LR, #8

● magic CPSR restore when PC is the destination and the S flag set
● on entry to handler adjust LR (eg subtract 4)

➔ STMDB sp!, {some regs, lr}
● then to return, use a

➔ LDMIA sp!, {some regs, pc}^
➢ ^ means to restore CPSR also.

Exception Programming 9 Young Won Lim
3/12/22

(10) Assigning interrupts

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

It is up to the system designer
who can decide which HW peripheral
can produce which interrupt.

But system designers have adopted
a standard design for assigning interrupts:

SWI are used to call privileged OS routines.
IRQ are assigned to general purpose interrupts

like periodic timers.
FIQ is reserved for one single interrupt source

that requires fast response time.

Exception Programming 10 Young Won Lim
3/12/22

(11) Interrupt latency

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

It is the interval of time
from an external interrupt signal being raised
to the first fetch of an instruction of the ISR
of the raised interrupt signal.

System architects try to achieve two main goals:
● To handle multiple interrupts simultaneously.
● To minimize the interrupt latency.

And this can be done by 2 methods:
● allow nested interrupt handling
● give priorities to different interrupt sources

Exception Programming 11 Young Won Lim
3/12/22

(12) Enabling and disabling interrupts

https://www.sciencedirect.com/topics/computer-science/software-interrupt

N Z C V T mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FI

MRS To read CPSR
MSR To store in CPSR
BIC Bit clear instruction
ORR OR instruction

MRS

MSR

Enabling an IRQ/FIQ Interrupt
MRS r1, cpsr
BIC r1, r1, #0x80/0x40
MSR cpsr_c, r1

Disabling an IRQ/FIQ Interrupt
MRS r1, cpsr
ORR r1, r1, #0x80/0x40
MSR cpsr_c, r1

This is done by modifying the CPSR, this is done
using only 3 ARM instruction:

Exception Programming 12 Young Won Lim
3/12/22

MRS / MSR instructions

http://www2.unb.ca/~owen/courses/2253-2017/slides/08-interrupts.pdf

MSR moves a regular register to a status register.
● status registers are CPSR, SPSR
● Underscores after (eg CPSR_cf) indicate

which sub-parts of the status register are affected.

MRS moves a status register into a regular register

MRS

MSR

Exception Programming 13 Young Won Lim
3/12/22

(13) Interrupt stack

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

Stacks are needed extensively for context switching
between different modes when interrupts are raised.

The design of the exception stack depends on two factors:
● OS requirements.
● target hardware.

A good stack design tries to avoid stack overflow
because it cause instability in embedded systems.

Exception Programming 14 Young Won Lim
3/12/22

(13) Interrupt stack

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

exception handling uses stacks extensively
because each exception has
a specific mode of operation,
so switching between modes occurs and
saving the previous mode data is required before switching
so that the core can switch back to its old state successfully.

each mode has a dedicated register for a stack pointer.

Exception Programming 15 Young Won Lim
3/12/22

(13) Interrupt stack

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

the design of these stacks depends on
some factors like operating system requirements
for stack design and target hardware physical limits
on size and position in memory.

Most of ARM based systems has the stack designed
such that the top of it is located at high memory address.

A good stack design tries to avoid stack overflow
because this causes instability in embedded systems.

Exception Programming 16 Young Won Lim
3/12/22

(13) Interrupt stack

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

Interrupt Stack

User Stack

Heap

Vector Table

Code

Interrupt Stack

User Stack

Heap

Vector Table

Code

two memory layouts

the first is the traditional stack layout.

the second layout has the advantage
that when overflow occurs,
the vector table remains untouched
so the system has the chance
to correct itself.

Exception Programming 17 Young Won Lim
3/12/22

Multiple stacks

http://www2.unb.ca/~owen/courses/2253-2017/slides/08-interrupts.pdf

Interrupt code typically uses stacks.
there is a separate R13 (SP) for each mode (except one - system mode).

So there is a separate stack per mode

at the startup, each SP needs to be initialized.

● change mode via a MSR (move into status register)
● store a value to (that) SP.
● then use a MSR to put mode back

R13 (SP) R13 (SP) R13 (SP) R13_irqR13_fiq R13_svc R13_abt R13_und

MSR CPSR_c, R1 ; Mode1
MOV SP, R0

MSR CPSR_c, R2; Mode2

Exception Programming 18 Young Won Lim
3/12/22

(14) Interrupt stack

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

Two design decisions need to be made for the stacks:
● the location
● the size

traditional memory layout

the benefit of this layout is that
the vector table remains untouched
if a stack overflow occured!!

Exception Programming 19 Young Won Lim
3/12/22

Stack pointer initialization

https://developer.arm.com/documentation/dui0471/m/embedded-software-development/stack-pointer-initialization

The stack_bas symbol can be a hard-coded address,
or it can be defined in a separate assembler source file
and located by a scatter file.

the example allocates 256 bytes of stack
for Fast Interrupt Request (FIQ) and
Interrupt Request (IRQ) mode,
but you can do the same for any other execution mode.

 stack_bas DCD 0x18000
 Len_FIQ_Stack EQU 256
 Len_IRQ_Stack EQU 256

FIQ Stack

IRQ Stack

SVC Stack

stack_bas (= 0x18000)

Len_FIQ_Stack (= 256)

Len_IRQ_Stack (= 256)

Exception Programming 20 Young Won Lim
3/12/22

Stack pointer initialization

https://developer.arm.com/documentation/dui0471/m/embedded-software-development/stack-pointer-initialization

To set up the stack pointers,
enter each mode with interrupts disabled,
and assign the appropriate value to the stack pointer.

The stack pointer value set up in the reset handler
is automatically passed as a parameter
to __user_initial_stackheap() by C library initialization code.

Therefore, this value must not be modified by
__user_initial_stackheap()

Len_FIQ_Stack EQU 256
Len_IRQ_Stack EQU 256
stack_bas DCD 0x18000

Exception Programming 21 Young Won Lim
3/12/22

CPSR_c, CPSR_f, CPSR_fc

https://www.sciencedirect.com/topics/computer-science/software-interrupt

N Z C V T mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FI

To disable Interrupt (IRQ), set I

To disable Fast Interrupt (FIQ), set F

the T bit shows running in the Thumb state

Current Program Status Register (CPSR)

Saved Program Status Register (SPSR)

cpsr_c

the lower 8-bits

cpsr_f cpsr_fc

control bitsflag bits

the upper 4-bits

spsr_cspsr_f spsr_fc

Exception Programming 22 Young Won Lim
3/12/22

Stack pointer initialization

https://developer.arm.com/documentation/dui0471/m/embedded-software-development/stack-pointer-initialization

; ***
; This example does not apply to ARMv6-M and ARMv7-M profiles
; ***
Len_FIQ_Stack EQU 256
Len_IRQ_Stack EQU 256
stack_bas DCD 0x18000

; Reset_Handler ; stack_base could be defined above, or located in a scatter file
 LDR R0, stack_base ; ; Enter each mode in turn and set up the stack pointer
 MSR CPSR_c, #Mode_FIQ:OR:I_Bit:OR:F_Bit ; FIQ mode, Interrupts disabled
 MOV sp, R0 ; SP_fiq initialization

 SUB R0, R0, #Len_FIQ_Stack
 MSR CPSR_c, #Mode_IRQ:OR:I_Bit:OR:F_Bit ; IRQ mode, Interrupts disabled
 MOV sp, R0 ; SP_irq initialization

 SUB R0, R0, #Len_IRQ_Stack
 MSR CPSR_c, #Mode_SVC:OR:I_Bit:OR:F_Bit ; SVC mode, Interrupts disabled
 MOV sp, R0 ; SP_svc initialization

 ; Leave processor in SVC mode

MSR

Exception Programming 23 Young Won Lim
3/12/22

Stack pointer initialization

https://developer.arm.com/documentation/dui0471/m/embedded-software-development/stack-pointer-initialization

 MSR CPSR_c, #Mode_FIQ:OR:I_Bit:OR:F_Bit

MRS r1, cpsr
ORR r1, r1, #0xD1
MSR cpsr_c, r1

 MSR CPSR_c, #Mode_IRQ:OR:I_Bit:OR:F_Bit

MRS r1, cpsr
ORR r1, r1, #0xD2
MSR cpsr_c, r1

 MSR CPSR_c, #Mode_SVC:OR:I_Bit:OR:F_Bit

MRS r1, cpsr
ORR r1, r1, #0xD3
MSR cpsr_c, r1

0 0 0 01

0 0 0 11

0 0 1 01

0 0 1 11

0 1 1 11

1 0 1 11

1 1 1 11

Usr (usr)

Fast Interrupt (fiq)

Interrupt (irq)

Supervisor (svc)

Abort (abt)

Undefined (und)

System (sys)

1 01

1 01

1 01

1 01

1 01

1 01

1 01

 modeF TI

0x10

0x11

0x12

0x13

0x17

0x1D

0x1F

Exception Programming 24 Young Won Lim
3/12/22

CPS instruction

https://stackoverflow.com/questions/20653025/msr-cpsr-c-0x13-doesnt-work-using-arm-assembly

N Z C V T mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FI

You can't change between modes using instructions

which directly write to the CPSR mode bits in User mode.

proper way is to use a svc (supervisor call) and

execute necessary instruction requested.

CPS (Change Processor State) Instruction

only permitted in privileged software execution, and

has no effect in User mode.

CPSIE – Interrupt or Abort Enable

CPSID – Interrupt or Abort Disable

a : Enables or disables imprecise aborts.

i : Enables or disables IRQ interrupts.

f : Enables or disables FIQ interrupts.

CPSIE if

; enable interrupts and fast interrupts

CPSID A

; disable imprecise aborts

CPSID ai, #17

; disable imprecise aborts and

interrupts, and enter FIQ mode

CPS #16

; enter User mode

Exception Programming 25 Young Won Lim
3/12/22

SWI (Software Interrupt)

http://www2.unb.ca/~owen/courses/2253-2017/slides/08-interrupts.pdf

● Some ISAs, including ARMv4, have a special
SWI instruction that,
when executed, causes the system to act like
when a hardware device requested an interrupt.

● A hardware interrupt is like an unscheduled subroutine call
that also puts the processor into an more privileged mode.

● Handler code is trusted and part of the operating system.

● So an SWI instruction is often used
to invoke an OS service subroutine.

Exception Programming 26 Young Won Lim
3/12/22

SWI / SVC opcode

https://stackoverflow.com/questions/8459279/are-arm-instructuons-swi-and-svc-exactly-same-thing

● the SWI instruction is called its new name, SVC

● SWI and SVC are same thing, it is just a name change.
Previously, the SVC instruction was called SWI, Software Interrupt.

● the opcode for SVC (and SWI) is partially user defined
● bit 0-23 is user defined and is like a parameter to SVC handler
● bits 24-27 are b1111 and these 4 bits makes CPU

to realize that the opcode is SVC (or SWI).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Software Interrupt SWI {<cond>} <24-bit immediate>

cond 1 1 1 1 Ignored by processor (15)

Exception Programming 27 Young Won Lim
3/12/22

SWI (Software Interrupt)

http://www2.unb.ca/~owen/courses/2253-2017/slides/08-interrupts.pdf

Software can generate an exception.
Use SWI to request an operating-system service.

SWI handler has to use the value in R14
to find the actual instruction,
in order to extract the “SVC number”
field and thus know which OS service was requested.

LDR r10, [lr, #-4] ; Read the SWI instruction
BIC r10, r10, #0xff000000 ; Mask off top 8 bits
BL service_routine ; r10 - contains the SWI number

Exception Programming 28 Young Won Lim
3/12/22

Error Exceptions

http://www2.unb.ca/~owen/courses/2253-2017/slides/08-interrupts.pdf

● Undefined instruction
● can be intentional (emulate a “missing” instruction)

● Prefetch abort
● an attempt to fetch instruction fails

(eg, PC is not a valid memory location)
● Data abort

● A LD or ST with an illegal address
● A store to a read-only address

● Sometimes, the response should be to die gracefully. But
other times, we may be able to recover and continue.

Exception Programming 29 Young Won Lim
3/12/22

Overall Approach

http://www2.unb.ca/~owen/courses/2253-2017/slides/08-interrupts.pdf

For an exception, we need to
● save the current state (including CPSR)
● reset the PC to the handler code [& change mode]
● execute the handler
● restore the saved state, including the PC & mode

State saving and PC resetting are done by hardware.
Handler and restoring done by software.

Exception Programming 30 Young Won Lim
3/12/22

Priorities in IRQ

http://www2.unb.ca/~owen/courses/2253-2017/slides/08-interrupts.pdf

● Even within a given exception (eg IRQ),
some hardware units (eg disk) are more urgent
than others (eg keyboard).

● To prioritize, could check all interrupt request inputs
Then software can check each possible device
to see who’s knocking...starting with the most urgent.

● Or a special priority device, a VIC, can take care of this.
● devices' IRQ lines go to VIC
● only VIC actually interrupts CPU
● CPU can ask VIC for the handler address

of the highest priority active interrupt request.
[talking to devices: stay tuned!]

Exception Programming 31 Young Won Lim
3/12/22

(15) Interrupt handling – non-nested

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

● This is the simplest interrupt handler.
● Interrupts are disabled until control

is returned back to the interrupted task.
● One interrupt can be served at a time.
● Not suitable for complex embedded systems.

Exception Programming 32 Young Won Lim
3/12/22

(15) Nested interrupt handling

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

● Handling more than one interrupt at a time
is possible by enabling interrupts
before fully serving the current interrupt.

● Small latency
● For complex systems
● No difference between interrupts by priorities,

so normal interrupts can block critical interrupts.

Exception Programming 33 Young Won Lim
3/12/22

(16) Nested interrupt handling

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

● The handler tests a flag
that is updated by the ISR

● re-enabling interrupts requires
switching out of current interrupt mode
to either SVC or system mode.

● Context switch involves emptying the IRQ stack
into reserved blocks of memory
on SVC stack called stack frames

Exception Programming 34 Young Won Lim
3/12/22

(16) Priortized interrupt handling

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

associate a priority level
with a particular interrupt source.

● Handling prioritization can be done
by means of software or hardware.

● When an interrupt signal is raised,
a fixed amount of comparisons is done.
● deterministic interrupt latency
● overhead

Exception Programming 35 Young Won Lim
3/12/22

(17) other interrupt handling

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

● Re-entrant interrupt handler:
re-enable interrupts earlier and
support priorities, so the latency is reduced.

● Prioritized standard interrupt handler:
arranges priorities in a special way
to reduce the time needed to decide
on which interrupt will be handled.

● Prioritized grouped interrupt handler:
groups some interrupts into subset
which has a priority level,
this is good for large amount of interrupt sources.

Exception Programming 36 Young Won Lim
3/12/22

(18) other interrupt handling

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

Availability of different modes of operation in ARM
helps in exception handling in a structured way.

Context switching is one of the main issues
affecting interrupt latency,
and this is resolved in ARM FIQ mode
by increasing number of banked registers.

We can’t decide on one interrupt handling scheme
to be used as a standard in all systems,
it depends on the nature of the system:

What type of interrupts are there?
How many interrupts are there?

Exception Programming 37 Young Won Lim
3/12/22

Exception entry and return sequence (1)

At exception entry, the processor saves
R0-R3, R12, LR, PC and PSR on the stack.

Saving PC means that
the address of the next instruction to be executed
after return from the exception handler
is saved on the stack.

LR is also updated with EXC_RETURN and that
when the EXC_RETURN value is loaded to the PC,
the exception return sequence begins.

LR ← EXC_RETURN
PC ← LR

https://community.arm.com/developer/ip-products/processors/f/cortex-m-forum/4557/cortex-m4-exception-return-sequence

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15

FP
IP
SP
LR
PC

a0
a1
a2
a3
v1
v2
v3
v4
v5
v6
v7
v8

SB

Exception Programming 38 Young Won Lim
3/12/22

Exception entry and return sequence (2)

the EXC_RETURN values are special values
that are recognized by the hardware
rather than proper pc values.

Loading an EXC_RETURN value into the PC
initiates the hardware sequence
– the reverse of the interrupt sequence
– the return sequence

That reverse sequence will then
load the actual pc to resume at.

You don't explicitly load the various registers,
that is all done automatically by the return sequence.

https://community.arm.com/developer/ip-products/processors/f/cortex-m-forum/4557/cortex-m4-exception-return-sequence

Return Sequence

LR ← EXC_RETURN
PC ← LR

Automatic Hardware Sequence
● no explicit register loading
● only have to change

the EXC_RETURN value

Exception Programming 39 Young Won Lim
3/12/22

Exception entry and return sequence (3)

Loading PC with the value of LR is suffiient.

LR already holds EXC_RETURN, and
you do not have to worry about
which stack you need to use;
the EXC_RETURN in LR is
pre-encoded with the correct value.

Normally you only have to
change the EXC_RETURN value
when you're writing a context-switcher.

https://community.arm.com/developer/ip-products/processors/f/cortex-m-forum/4557/cortex-m4-exception-return-sequence

LR ← EXC_RETURN
PC ← LR

Exception Programming 40 Young Won Lim
3/12/22

Exception entry and return sequence (4)

The EXC_RETURN is a nice feature of the Cortex architecture.

No need to have a RFI instruction (Return From Interrupt)

no difference in writing an interrupt-routine
and a normal subroutine
for a Cortex-M based microcontroller.

https://community.arm.com/developer/ip-products/processors/f/cortex-m-forum/4557/cortex-m4-exception-return-sequence

Exception Programming 41 Young Won Lim
3/12/22

Exception entry and return sequence (5)

1. An interrupt is signalled; a pending-flag is set.
2. The interrupt is started, the registers xPSR, PC, LR, R12, R3-R0 are

all pushed onto the interrupt-stack.
3. The processor state is changed to use the interrupt-state.
4. The LR is loaded with the EXC_RETURN value

(which is one of these: 0xFFFFFFF1, 0xFFFFFFF9,
0xFFFFFFFD, 0xFFFFFFE1, 0xFFFFFFE9 or 0xFFFFFFED).

5. The PC is loaded with the address from the interrupt-vector.
6. Your Interrupt Service Routine (ISR) is executed.
7. You make sure the LR register is saved/restored if it's changed.
8. You finish your Interrupt Service Routine by executing a BX LR instruction.
9. The EXC_RETURN value from the LR register is now moved into PC.

The core now sees that this is a special return-address,
so it restores the registers from the current stack.

10.When the registers are restored, the execution continues where it was interrupted.

https://community.arm.com/developer/ip-products/processors/f/cortex-m-forum/4557/cortex-m4-exception-return-sequence

Exception Programming 42 Young Won Lim
3/12/22

Exception entry and return sequence (5)

2. The interrupt is started, the registers xPSR, PC, LR, R12, R3-R0 are
all pushed onto the interrupt-stack.

9. The EXC_RETURN value from the LR register is now moved into PC.
The core now sees that this is a special return-address,
so it restores the registers from the current stack.

https://community.arm.com/developer/ip-products/processors/f/cortex-m-forum/4557/cortex-m4-exception-return-sequence

Exception Programming 43 Young Won Lim
3/12/22

Exception entry and return sequence (5)

Interrupt code typically uses stacks.
And there is a separate R13 for each mode (except one).
So there is a separate stack per mode
and at machine startup, it needs to be initialized.

● Initialization via a MSR (move into status register) instruction to change mode.
● Then store a value to (that) SP.
● Then use a MSR to put mode back

http://www2.unb.ca/~owen/courses/2253-2017/slides/08-interrupts.pdf

Exception Programming 44 Young Won Lim
3/12/22

Exception entry and return sequence (6)

the hardware entry and return sequence
allows the processor not actually
to do the return sequence
if there is a pending interrupt

Instead, it immediately start
handling the new interrupt
without having to load the registers on return
and then store them again
before entering the new interrupt handler.

https://community.arm.com/developer/ip-products/processors/f/cortex-m-forum/4557/cortex-m4-exception-return-sequence

bl f2bl f1

bx lr

bx lr

lr

ISR1

ISR2

calling

Exception Entry

Exception Entry

Exception Return

Exception Programming 45 Young Won Lim
3/12/22

Exception entry and return sequence (7)

If an exception is still in pending state
when another exception handler has been completed,

instead of returning to the interrupted program
and then entering the exception sequence again,

a tail-chain scenario will occur,
where the processor will not have to
restore all register values from the stack and
push them back to the stack again.

The tail-chaining of exceptions allows
lower exception processing overhead
and better energy efficiency.

https://stackoverflow.com/questions/13029201/tail-chaining-of-interrupts

bl f2bl f1

bx lr

bx lr

lr

ISR1

ISR2

calling

Exception Entry

Exception Entry

Exception Return

Exception Programming 46 Young Won Lim
3/12/22

Exception entry and return sequence (8)

it's possible that another interrupt will be handled by tail-chaining.

This may occur between step 8 and step 9.

8. You finish your Interrupt Service Routine by executing a BX LR instruction.
9. The EXC_RETURN value from the LR register is now moved into PC.
 The core now sees that this is a special return-address,
 so it restores the registers from the current stack.

the registers R0-R3 and R12 will not contain values identical
to what is on the stack on interrupt entry.

In fact, you can never trust what's in R0-R3 and R12,
so if you need those values

for instance if you're using SVC,
or if you're making some debug-facility,

then fetch them from the stack.

https://community.arm.com/developer/ip-products/processors/f/cortex-m-forum/4557/cortex-m4-exception-return-sequence

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15

IP

LR
PC

a0
a1
a2
a3

Exception Programming 47 Young Won Lim
3/12/22

Exception entry and return sequence (9)

That makes sense given the wonderful features
such as Tail chaining or pop pre-emption.

As the AAPCS calls for, R0-R3 can be used
as input parameters/arguments to the function being called,
but it is rather safer that the function/subroutine
should fetch the values from stack
instead of directly referring to.

It is seemed that the handler would not know under
which circumstances it is executing -
either because of tail chaining or
it entering the handler from the thread mode.

If the handler is entered from thread mode
executing normal user program,
then the R0-R3 will be having correct value
but if it is something like tail chaining,
those may not be correct.

https://community.arm.com/developer/ip-products/processors/f/cortex-m-forum/4557/cortex-m4-exception-return-sequence

Exception Programming 48 Young Won Lim
3/12/22

Finding the right handler

For the different kinds of exceptions, there are
different handlers. When an exception occurs,
the hardware determines the source of the
exception as a 3-bit number, which it uses to
index the vector table (which starts in memory
at address 0)

0x1c FIQ
0x18 IRQ
0x14 (Reserved)
0x10 Data Abort
0x0c Prefetch Abort
0x08 SWI
0x04 Undefined Instruction
0x00 Reset

http://www2.unb.ca/~owen/courses/2253-2017/slides/08-interrupts.pdf

Exception Programming 49 Young Won Lim
3/12/22

References

[1] http://wiki.osdev.org/ARM_RaspberryPi_Tutorial_C
[2] http://blog.bobuhiro11.net/2014/01-13-baremetal.html
[3] http://www.valvers.com/open-software/raspberry-pi/
[4] https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/os/downloads.html

http://wiki.osdev.org/ARM_RaspberryPi_Tutorial_C

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

