Boolean Algebra (8A)

Copyright (c) 2015-2018 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Argument

Boolean Algebra

In mathematics and mathematical logic, Boolean algebra is the branch of algebra in which the values of the variables are the truth values true and false, usually denoted 1 and 0 respectively. Instead of elementary algebra where the values of the variables are numbers, and the prime operations are addition and multiplication, the main operations of Boolean algebra are the conjunction and denoted as \wedge, the disjunction or denoted as v, and the negation not denoted as \neg. It is thus a formalism for describing logical relations in the same way that ordinary algebra describes numeric relations.

Operators

x	y	$x \wedge y$	$x \vee y$	\boldsymbol{x}	$\neg x$
$\mathbf{0}$	$\mathbf{0}$	0	0	$\mathbf{0}$	1
$\mathbf{1}$	$\mathbf{0}$	0	1	$\mathbf{1}$	0
$\mathbf{0}$	$\mathbf{1}$	0	1		
	$\mathbf{1}$	1	1		

x	y	$x \rightarrow y$	$x \oplus y$	$x \equiv y$
$\mathbf{0}$	$\mathbf{0}$	1	0	1
$\mathbf{1}$	$\mathbf{0}$	0	1	0
$\mathbf{0}$	$\mathbf{1}$	1	1	0
$\mathbf{1}$	$\mathbf{1}$	1	0	1

$$
\begin{aligned}
& \text { Associativity of } \mathrm{V} \text { : } \\
& \text { Associativity of } \wedge \text { : } \\
& \text { Commutativity of } \mathrm{V} \text { : } \\
& \text { Commutativity of } \wedge \text { : } \\
& \text { Distributivity of } \wedge \text { over } \vee \text { : } \\
& \text { Identity for } \mathrm{V} \text { : } \\
& \text { Identity for } \wedge \text { : } \\
& \text { Annihilator for } \wedge \text { : } \\
& x \vee(y \vee z)=(x \vee y) \vee z \\
& x+(y+z)=(x+y)+z \\
& x \wedge(y \wedge z)=(x \wedge y) \wedge z \\
& x(y z)=(x y) z \\
& x \vee y=y \vee x \\
& x+y=y+x \\
& x \wedge y=y \wedge x \\
& x y=y z \\
& x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z) \\
& x(y+z)=x y+x z \\
& x \vee 0=x \\
& x+0=x \\
& x \wedge 1=x \\
& x^{*} 1=x \\
& x \wedge 0=0 \\
& x * 0=0
\end{aligned}
$$

Annihilator for V :	$x \vee 1=1$	$x+1=1$
Idempotence of V :	$x \vee x=x$	$x+x=x$
Idempotence of \wedge :	$x \wedge x=x$	$x^{*} x=x$
Absorption 1:	$x \wedge(x \vee y)=x$	$x(x+y)=x$
Absorption 2:	$x \vee(x \wedge y)=x$	$x+x y=x$
Distributivity of \vee ove	$x \vee(y \wedge z)=(x$	$x+y z=(x+$

Complementation 1
$x \wedge \neg x=0$
$x \bar{x}=0$
Complementation 2
$x \vee \neg x=1$

De Morgan 1
$\neg x \wedge \neg y=\neg(x \vee y)$
De Morgan $2 \quad \neg x \vee \neg y=\neg(x \wedge y)$
$\bar{x} \bar{y}=\overline{(x+y)}$
$x+\bar{x}=1$
$\bar{x}+\bar{y}=\overline{(x y)}$

Digital Logic Gates

Digital logic is the application of the Boolean algebra of 0 and 1 to electronic hardware consisting of logic gates connected to form a circuit diagram. Each gate implements a Boolean operation, and is depicted schematically by a shape indicating the operation. The shapes associated with the gates for conjunction (AND-gates), disjunction (OR-gates), and complement (inverters) are as follows. ${ }^{[17]}$

Figure 3. Logic gates
-
The lines on the left of each gate represent input wires or ports. The value of the input is represented by a voltage on the lead. For so-called "active-high" logic, 0 is represented by a voltage close to zero or "ground", while 1 is represented by a voltage close to the supply voltage; active-low reverses this. The line on the right of each gate represents the output port, which normally follows the same voltage conventions as the input ports.

NOT Gate

Negation					
NOT			\bar{A} or $\sim A$	INPUT	OUTPUT
				A	NOT A
				0	1
				1	0

AND, OR Gates

Conjunction and Disjunction						
AND		$\&$	$A \cdot B$	INPUT		OUTPUT
				A	B	A AND B
				0	0	0
				0	1	0
				1	0	0
				1	1	1
OR		≥ 1	$A+B$	INPUT		OUTPUT
				A	B	A OR B
				0	0	0
				0	1	1
				1	0	1
				1	1	1

https://en.wikipedia.org/wiki/Logic_gate

NAND, NOR Gates

Alternative denial and Joint denial

Alternative denial and Joint denial						
				INPUT		OUTPUT
				A	B	A NAND B
		\&		0	0	1
	-		$A \cdot B$ or $A \uparrow B$	0	1	1
				1	0	1
				1	1	0
					PT	OUTPUT
				A	B	A NOR B
	T	$-\geq 1$		0	0	1
NOR	\square		$A+B$ or $A \downarrow B$	0	1	0
				1	0	0
				1	1	0

XOR, XNOR Gates

Exclusive or and Biconditional						
XOR			$A \oplus B$	INPUT		OUTPUT
				A	B	A XOR B
				0	0	0
				0	1	1
				1	0	1
				1	1	0
XNOR			$\overline{A \oplus B}$ or $A \odot B$	INPUT		OUTPUT
				A	B	A XNOR B
				0	0	1
				0	1	0
				1	0	0
				1	1	1

https://en.wikipedia.org/wiki/Logic_gate

CMOS Logic Gates

Identity and Null Element Theorem

Distributive

$$
x \cdot(y+z)=x \cdot y+x \cdot z \quad \neq x \cdot y+z
$$

This parenthesis cannot be deleted

$$
x+(y \cdot z)=(x+y) \cdot(x+z) \quad=x+y \cdot z
$$

This parenthesis can be deleted

Operator precedence: . $>+$

Inclusion

$$
\begin{aligned}
x \cdot(x+y) & =x \\
x \cdot(x+y) & =x \cdot x+x \cdot y \\
& =x+x \cdot y \\
& =x \cdot(1+y) \\
& =x \\
x+x y & =x \\
x+x y & =x \cdot 1+x \cdot y \\
& =x \cdot(1+y) \\
& =x
\end{aligned}
$$

$$
x+y
$$

$x y$

Inclusion

$$
\begin{aligned}
x \cdot(x+y) & =x \\
x \cdot(x+y) & =x \cdot x+x \cdot y \\
& =x+x \cdot y \\
& =x \cdot(1+y) \\
& =x \\
x+x y & =x \\
x+x y & =x \cdot 1+x \cdot y \\
& =x \cdot(1+y) \\
& =x
\end{aligned}
$$

$$
x+y
$$

$x y$

Eliminate

$$
\begin{aligned}
x \cdot(\bar{x}+y) & =x y \\
x \cdot(\bar{x}+y) & =x \cdot \bar{x}+x \cdot y \\
& =0+x \cdot y \\
& =x \cdot y \\
x+\bar{x} y & =x+y \\
x+\bar{x} y & =(x+\bar{x}) \cdot(x+y) \\
& =1 \cdot(x+y) \\
& =x+y
\end{aligned}
$$

References

[1] http://en.wikipedia.org/
[2]

