\[G(t) = 0 = G(t) \]

Why?

Rolle's Thm: \[\exists \, \xi \in [a, b] \text{ s.t. } G'(\xi) = 0 \]

We have \[G'(t) \ni 0 \]

\[G'(t) = e^{\iota x}(t) - \epsilon t \quad \text{for } t \in [a, b] \]

Why?

\[e(t) := \frac{g(t) - \psi(t)}{\iota x} \quad \text{Simpson} \]

\[a(t) = \int_t^b ... + \int_t^{t+\iota x} ... \quad k \in [-t, t] \]

\[a(t) = F(t) + F(t) \]

\[a(t) = \frac{1}{3} [F(t) + 4F(t) + F(t)] \]

\[a(t) = \frac{1}{3} [F(t) + 4F(t) + F(t)] \]

\[a(t) = \frac{1}{3} [F(t) + 4F(t) + F(t)] \]
\[G'(\bar{x}) = \frac{\bar{y}}{2} \left[\frac{d}{d\bar{x}} F^{(1)}(\bar{x}) \right] \bigg|_{\bar{x} = \bar{x}} - \frac{1}{2} \frac{df}{d\bar{x}} \bigg|_{\bar{x} = \bar{x}}^{\bar{x}} \]

Since \(E_y > 0 \) only if \(\bar{x} \in [0, \bar{x}] \) [Prove]

Solve for \(\bar{x} \):

\[\bar{x} = \frac{1}{\lambda} \int_{0}^{\bar{x}} f''(y) \, dy \]

HW: Also rel. behv. \(y \) and \(\bar{x} \).

Thm. p. 12-2