
ELF1 7A Relocation Background - ELF Study 1999

Young W. Lim

2019-05-08 Wed

Young W. Lim ELF1 7A Relocation Background - ELF Study 1999 2019-05-08 Wed 1 / 88

Outline

1 Based on

2 Overview

3 Relocs and memory locations

4 Symbols and sections

5 Global and local symbol relocs

6 PIC relocation
In the code
In the PLT
In the GOT

7 Load addresses

8 Static and dynamic linkers

Young W. Lim ELF1 7A Relocation Background - ELF Study 1999 2019-05-08 Wed 2 / 88

Based on

"Study of ELF loading and relocs", 1999
http://netwinder.osuosl.org/users/p/patb/public_html/elf_
relocs.html

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim ELF1 7A Relocation Background - ELF Study 1999 2019-05-08 Wed 3 / 88

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html
http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Compling 32-bit program on 64-bit gcc

gcc -v

gcc -m32 t.c

sudo apt-get install gcc-multilib

sudo apt-get install g++-multilib

gcc-multilib

g++-multilib

gcc -m32

objdump -m i386

Young W. Lim ELF1 7A Relocation Background - ELF Study 1999 2019-05-08 Wed 4 / 88

Handling inter-related referece

linking in the old days

at compile time, inter-related references are not resolved
.o files include a reloc object that contains
the information on these inter-related references
at link time, the linker would merge these informations
in .o files building a table of where symbols are ultimately located.
the linker would run through the set of relocs, filling them in

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 1999 2019-05-08 Wed 5 / 88

Reloc attributes

A reloc consists of three parts:

where in memory the fix is to be made
the symbol which is involved in the fix
an algorithm that the linker should use to create the fixup

The algorithm can be as simple as R_386_32
"use the symbol memory location; store it in binary"
complicated, such as R_ARM_PC26
"calculate the distance from here to the symbol, divide by 4,
subtract 2 and add the result to the 3 lower bytes"

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 1999 2019-05-08 Wed 6 / 88

Static linking

these relocs are scattered through the .o files,
and are used at link time create the correct binary executable file.
resolving all the relocs is necessary
in the days of static linking

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 1999 2019-05-08 Wed 7 / 88

Dynamic linking

run-time linking
the designers of the ELF format enabled reloc entites
to hold run-time resolution information.

So now executable files may have relocs in them,
even after linking

ELF implements run time linking
by deferring function resolution
until the function is called.

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 1999 2019-05-08 Wed 8 / 88

New algorihtm

However, new algorithms are required to inform
how these fixups are to be done.
Hence the introduction of a new family of reloc algorithms

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 1999 2019-05-08 Wed 9 / 88

Relocation

Binary executables often need certain bits of information
fixed up before they execute

ELF binaries carry a list of relocs (relocation table)
which describe these fixups

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 10 / 88

Relocation entries

Each reloc contains relocation entry

the address in the binary that is to get the fixup (offset)
the algorithm to calculate the fixup (type)
a symbol (string and object length)

At fixup time,
the algorithm (type) uses the offset & symbol,
along with the value (addend) currently in the file,
to calculate a new value to be stored into memory.

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 11 / 88

Code and Data

One of the characteristics of the ELF binary system is
a separation of code and data.

The code of apps and libraries is marked
read-only and executable

The data is marked
read-write, and not-executable.

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 12 / 88

Code segment (1)

The code is read-only
so that multiple processes can share the code,

the code is loaded into memory only once.
the code is never modified,
and appears identical in each process space.

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 13 / 88

Code segment (2)

Each process has its own page tables,
mapping the code into its own memory.

therefore the code must be position independent
each process can load the code into a different address

The code segment is allowed to contain
constant pointers and strings (.rodata).

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 14 / 88

Data segment (1)

The data segment is read-write and
is mapped into each process space differently.

In Linux, each data segment is loaded
from the same base mmap (identical),
but it is marked copy-on-write (own copy later)

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 15 / 88

Data segment (2)

after the first write,
each process has its own copy of the data.
(in its own read-write segment)

therefore, relocs can only point
to the data segment (_identically_)

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 16 / 88

Relocs in code and data segments

the relocs in the data segment are easy to be done

add relative offsets or
write absolute addresses

the relocs in the code area are more difficult.

the ELF reloc design makes the code relocs intact
an GOT entry in the data area is to be filled,
(Global Offset Table).

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 17 / 88

Relocs using GOT for a global object

if code needs to refer to a global object,
it refers to an entry in the GOT[],

at run-time, the GOT entry is fixed-up
to point to the correct address of the global object.
the code space need never be fixed-up at run time.

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 18 / 88

Relocs using GOT for a local object

if the code needs to refer to a local object,
it refers to it relative to the &GOT[0];

no run-time fixed-up
this too is position independent

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 19 / 88

Relocs using PLT

If the code needs to jump to a subroutine
in a different module,
the linker creates an array of jump-stubs
called the PLT (procedure linkup table)

these jump-stubs in the PLT jump indirect,
using an entry in the GOT[]
to implement the far call

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 20 / 88

Deferring function resolution

ELF implements run time linking
by deferring function resolution
until the function is called.

calls to library functions go through a fix-up process
just after the first time call is made

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 21 / 88

GOT relative

GOT-relative (GOTOFF) code is made
relative to the start of the GOT table (O)

relative to the load address of the module (X)

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 22 / 88

static and automatic variables

static variables

initialized at compile time,
since their address is known and fixed.
initialization to zero does not incur a run time cost

automatic variables

initialized at run time
incurs run time cost
each time the function is called
different addresses for each different call
if you do need that initialization, then request it.

https://stackoverflow.com/questions/14049777/why-are-global-variables-always-initialized-to-0-but-not-local-variables

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 23 / 88

global and static variables

global and static variables are stored

in the .data section when initialized
in the .bss section when uninitialized
a fixed memory location is allocated at compile time.
thus, have ’0’ as their default values.

auto variables are stored

on the stack, not a fixed memory location
stack memory is allocated at run time
thus, have their default value as garbage

https://stackoverflow.com/questions/14049777/why-are-global-variables-always-initialized-to-0-but-not-local-variables

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 24 / 88

uninitialized global and static variables

an object with automatic storage duration
if not initialized explicitly, its value is indeterminate
an object that has static storage duration
if not initialized explicitly, then:

if it has pointer type, a null pointer;
if it has arithmetic type, (signed or unsigned) zero;
if it is an aggregate, every member is initialized
if it is a union, the first named member is initialized

https://stackoverflow.com/questions/13251083/the-initialization-of-static-variables-in-c

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 25 / 88

universal zero initializer

the universal zero initializer

initializes everything in an object to 0,
whether it’s static or not
- sometype var = {0};

- someothertype var[SOMESIZE] = {0};
- anytype var[SIZE1][SIZE2][SIZE3] = {0};

https://stackoverflow.com/questions/13251083/the-initialization-of-static-variables-in-cP

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 26 / 88

initialized and uninitialized static variables

static variables (or arrays)

Initialized static variables

given value from code at compile time
usually stored in .data though this is compiler specific

Uninitialized statics

initialized at run time
stored into .bss though again this is compiler specific

https://stackoverflow.com/questions/13251083/the-initialization-of-static-variables-in-c

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 27 / 88

.bss (1) uninitialized or initialized to zero

The .bss section is guaranteed to be all zeros
when the program is loaded into memory.

the .bss section can have global data
uninitialized
initialized to zero

static int g_myGlobal = 0; // <--- in .bss section

https://stackoverflow.com/questions/16557677/difference-between-data-section-and-the-bss-section-in-c

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 28 / 88

.bss (2) no region of zero

the .bss section data are not included in the ELF file on disk

there isn’t a whole region of zeros
in the file for the .bss section

instead, the loader knows from the section headers
how much to allocate for the .bss section,
and simply zero it out before transfer control

https://stackoverflow.com/questions/16557677/difference-between-data-section-and-the-bss-section-in-c

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 29 / 88

.bss (3) PROGBITS vs NOBITS

the readelf -S section headers output:
[3] .data PROGBITS 00000000 000110 000000 00 WA 0 0 4
[4] .bss NOBITS 00000000 000110 000000 00 WA 0 0 4

.data is marked as PROGBITS

there are "bits" of program data in the ELF file
that the loader needs to read out into memory

.bss is marked NOBITS

there’s nothing in the file
that needs to be read into memory as part of the load.

https://stackoverflow.com/questions/16557677/difference-between-data-section-and-the-bss-section-in-c

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 30 / 88

.rel.text section

a list of locations in the .text section to be modified
when the linker combines this object file with others

modify any instruction in the code section that

calls an external function or
references a global variable

do not modify any instructions in the code section that

calls local functions

executable files do not include relocation information
unless the user explicitly instructs the linker

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 31 / 88

.rel.data section

relocation information for any global variable
that are referenced or defined by the module

modify the initial value of any initialized global variable
whose initial value is

the address of a global variable or
externally defined function

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 32 / 88

Global symbol relocs

global relocs must neccessarily involve
the three aspects of a reloc:

where in memory the reloc is to be made
the symbol involved in the reloc
the algorithm used to make the fixup.

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 33 / 88

Local symbol relocs

a local symbol can be fixed in memory
with respect to a memory "section",

the object file is allowed to
drop the local symbol name, and
replace it with a section-plus-offset

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 34 / 88

ARM code example (1)

.section .text
mov r0, r0 @sample code

.L2: call _do_something
ldr r6, .L3 @this code need a reloc!
mov r0, r0

.L4: .word Lextern

.L3: .word .L2 @this read-only data needs a reloc

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 35 / 88

ARM code example (2)

the code on the 3rd line (the call) needs to be fixed up,
but that’s easy, since it’s a PC relative fixup.
.L2: call _do_something

If the .o file has no idea where .Lextern is,
.L4: .word Lextern

it must neccessarily create a reloc which refers to symbol Lextern
.L4: .word 0 R_ARM_32 Lextern

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 36 / 88

ARM code example (3)

the word at .L3 needs a fixup as well.
.L3: .word .L2 @this read-only data needs a reloc

If the .o file can determine the location of a local symbol,
such as L2, then it is allowed to replace the symbol
with a section-plus-offset
The offset is stored in the reloc target address, and
the section is an entry in the reloc symbol table
.L3: .word 4 R_ARM_32 .text

This reduces the number of symbols in the symbol table,
making run-time linking easier.

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 37 / 88

ARM code example (4)

the R_*_GOTOFF and R_*_GOT32 relocs include

R_386_GOTOFF : GOT-relative, local symbol address
R_386_GOT32 : GOT-relative, GOT entry address

an offset from &GOT[0], which is usually about
halfway through the module.
The R_ARM_RELATIVE relocs, on the other hand,
contains an offset from the beginning of the module. Tradition.

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 38 / 88

Lazy binding and constraints

ELF dynamic linking defers the resolution
of jump / call addresses until the last minute.

Constraints

should not force a change in the assembly code produced for apps
but may cause changes as an assembly code is changed for PIC
all executable codes must not be modified at run time
any modified data must not be executed at run time

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 39 / 88

Three steps in a far jump

1 start in the code
2 go through the PLT
3 using a pointer from the GOT

the GOT entries that are used for PLT execution
are preloaded to default addresses
back to the corresponding PLT entry stub
push and jmp PLT[0] sequence

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 40 / 88

In the code

call function_call_n

the relative jump or call
the target is a PLT entry PLT[n+1]

it is (n+1)-th entry not n-th entry
consider that PLT[0] is a special entry

identical to a normal call
assume n is a number

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 41 / 88

(1) PLT entry : stub code

the PLT is a synthetic area, created by the linker
exists in both executable and libraries
an array of stubs, one per imported function call
through the special entry PLT[0], the resolver is called at last

PLT[n+1]: jmp *GOT[n+3]
push #n ; push n as a argument to the resolver
jmp PLT[0]

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 42 / 88

(2) indirect call through GOT

a call to PLT[n+1] will result in indirect call through GOT[n+3]

because of three special GOT entries : GOT[0,1,2]
jmp *GOT[n+3] ; 6-byte long

initially, the value at GOT[n+3] points back to PLT[n+1]+6

the default value at GOT[n+3] is PLT[n+1]+6
the next instruction after the 6 byte instruction

PLT[n+1]: jmp *GOT[n+3] ; 6 bytes insturction
PLT[n+1]+6: push #n ; push n as a argument to the resolver

jmp PLT[0]

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 43 / 88

(3) push, jmp sequence

at PLT[n+1], n is pushed onto the stack
as an argument for the resolver
consider n as an ID for a library function
the resolver uses the argument n on the stack
in resolving the symbol n

PLT[n+1]: jmp *GOT[n+3] ; 6 bytes insturction
PLT[n+1]+6: push #n ; push n as a argument to the resolver

jmp PLT[0]

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 44 / 88

(4) overriding the default GOT[n+3]

the resolver is called by the stub at PLT[0]
the resolver modifies the default value at GOT[n+3]
to point the correct target symbol n
overrides PLT[n+1]+6 (the default value at G[n+3])

thus after the first call, the control is taken
directly to the correct target symbol n (function_call_n)
instead of executing the push-jump sequence

PLT[n+1]: jmp *GOT[n+3] ; 6 bytes insturction
PLT[n+1]+6: push #n ; push n as a argument to the resolver

jmp PLT[0]

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 45 / 88

(5) the special entry PLT[0]

the resolver needs 2 argument

symbol n is already on the stack
pointer to the relocation table : GOT[1]
&GOT[1] is added on the stack

the resolver that is located in ld-linux.so.2
can determine which library function is asked for its service
using these two arguments on the stack
GOT[2] : entry point of dynamic linker

PLT[0]: push &GOT[1]
jmp GOT[2] ; entry point of dynamic linker

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 46 / 88

.dynamic section (1)

if an object file participates in dynamic linking,
its program header table will have an element of type PT_DYNAMIC.
this segment contains the .dynamic section.
A special symbol, _DYNAMIC, labels the section,
which contains an array of the dynamic structures

https://docs.oracle.com/cd/E23824_01/html/819-0690/chapter6-42444.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 47 / 88

.dynamic section (2)

_DYNAMIC symbol enables a program, such as the runtime linker,
to locate its own dynamic structure
without having yet processed its relocation entries
this method is especially important for the runtime linker,
because it must initialize itself without relying on
other programs to relocate its memory image.

https://docs.oracle.com/cd/E23824_01/html/819-0690/chapter6-74186.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 48 / 88

.dynamic section (3)

essentially holds a number of arguments that inform on
influence parts of the dynamic linker’s behavior
as a component of the run-time, the dynamic linker does
many other things besides just relocate functions,
it also executes other house keeping functions
like INIT and FINI
see elf/elf.h

http://blog.k3170makan.com/2018/11/introduction-to-elf-format-part-vii.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 49 / 88

.dynamic section (4)

.dynamic section contains information
that the dynamic linker uses
to bind procedure addresses
such as the symbol table and relocation information

Computer Architecture : A Programmer’s Perspective

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 50 / 88

(1) three types of GOT entries

the GOT contains helper pointers
for both PLT fixups and GOT fixups

the first 3 entries are special and reserved
the next M entries belong to the PLT fixups
the next D entries belong to various data fixups

the GOT is a synthetic area, createdy by the linker
exists in both executables and libraries
each library and executable gets its own PLT and GOT array

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 51 / 88

(2) the three special GOT entries

the special 3 entries in the GOT
GOT[0] : linked list pointer used by the dynamic linker
address of .dynamic section

GOT[1] : pointer to the reloc table for this module
module identification info for the linker

GOT[2] : pointer to the fixup / resolver code, located in ld-linux.so.2
entry point in dynamic linker

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 52 / 88

(3) the PLT fixup GOT entries

when the GOT is first set up,
all the GOT entries related to PLT fixups

GOT[n+3] are pointing back to PLT[n+1]+6
which jump to PLT[0] to call the resolver

PLT[n+1]: jmp *GOT[n+3]
push #n ; push n as a argument to the resolver
jmp PLT[0]

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 53 / 88

(4) the PLT/data fixup GOT entries

M entries belong to the PLT fixups

GOT[3] indirect function call helpers
GOT[4] indirect function call helpers
.
GOT[3+M-1] indirect function call helpers,

one per imported function

D entries belong to various data fixups

GOT[3+M] indirect pointers to global data references
GOT[3+M+1] indirect pointers to global data references
.
GOT[end] indirect pointers to global data references

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 54 / 88

Load address

in a typical Linux system,
the addresses 0 - 3fff_ffff (4 GB)
are available for the user program space.

exectuable binary files include header information
that indicates a load address

libraries, because they are position-independent,
do not need a load address, but contain a 0 in this field.

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 55 / 88

i386 load addresses 1999 (increasing from the top)

Start Len Usage
0000_0000 4k zero page
0000_1000 128M not used
0800_0000 896M app code/data space

followed by small-malloc() space
4000_0000 1G mmap space

library load space
large-malloc() space

8000_0000 1G stack space
working back from BFFF.FFE0

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 56 / 88

i386 load addresses 1999 (increasing from the bottom)

Start Len Usage
stack space

8000_0000 1G working back from BFFF.FFE0
memory mapped region
for shared libraries

4000_0000 1G large-malloc() space
small-malloc() space

0800_0000 896M app data / code space
0000_1000 128M not used
0000_0000 4k zero page

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 57 / 88

Linux Run-time Memory Image (increasing from the bottom)

memory invisible
0xc000_0000 Kernel virtual memory to the user code

User stack
created at run time ← %esp stack ptr
↓ ↓ ↓
↑ ↑ ↑
memory mapped region

0x4000_0000 for shared libraries

↑ ↑ ↑
Run time heap ← brk
created by malloc
R/W segment
(.data, .bss)
RO segment

0x0804_8000 (.init, .text, .rodata)

0x0000_0000 Unused
Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 58 / 88

mmap (1)

mmap (2) is a POSIX-compliant Unix system call that
maps files or devices into memory.
a method of memory-mapped file I/O
implements demand paging,

file contents are not read from disk directly
initially do not use physical RAM at all.

The actual reads from disk are performed in a lazy manner,
after a specific location is accessed.

https://en.wikipedia.org/wiki/Mmap

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 59 / 88

mmap (2)

#include <sys/mman.h>

void *mmap(void *addr, size_t length, int prot, int flags,
int fd, off_t offset);

int munmap(void *addr, size_t length);

creates a new mapping in the virtual address space of the
calling process
the starting address for the new mapping is specified in addr
the length argument specifies the length of the mapping
the contents of a file mapping are initialized
using length bytes starting at offset offset in the file
(or other object) referred to by the file descriptor fd

http://man7.org/linux/man-pages/man2/mmap.2.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 60 / 88

sys_brk (1)

the sys_brk system call is provided by the kernel,
to allocate memory without the need of moving it later
allocates memory right behind the application image in the memory
allows you to set the highest available address in the data section.

takes one parameter (the highest memory address)

https://www.tutorialspoint.com/assembly_programming/assembly_memory_management.htm

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 61 / 88

sys_brk (2)

#include <unistd.h>

int brk(void *addr);
void *sbrk(intptr_t increment);

brk() and sbrk() change the location of the program break, which
defines the end of the process’s data segment
the program break is the first location
after the end of the uninitialized data segment
increasing / decreasing the program break has the effect of
allocating / deallocating memory to the process;
sbrk() increments the program’s data space by increment bytes.

http://man7.org/linux/man-pages/man2/brk.2.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 62 / 88

Library load addresses (1)

The kernel has a preferred location
for mmap data objects at 0x4000_0000.
since the shared libraries are loaded by mmap, they end up here.

large mallocs are realized by creating a mmap, so
these end up in the pool at 0x4000_0000.

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 63 / 88

Library load addresses (2)

the library GLIBC that is mostly used for malloc
handles small mallocs by calling sys_brk(),
which extends the data area after the app,
at 0x0800_0000+sizeof(app).

As the mmap pool grows upward, the stack grows downward.
between them, they share 2G bytes.

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 64 / 88

Shared library address

The shared library design usually loads app first,
then the loader notices that it need support
and loads the dynamic loader library (using .interp section)
(usually /lib/ld-linux.so.2)
at 0x4000_0000
other libraries are loaded after ld.so.1
see which and where libraries will be loaded by ldd
ldd foo_app

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 65 / 88

Dynamic loader names

dynamic loader
dynamic linker
runtime linker
interpreter

ld-linux.so.2

ld-linux.so

ld.so

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 66 / 88

load address example (1)

There is a diagnostic case where the app is invoked by
/lib/ld-linux.so.2 foo_app foo_arg

the ld-linux.so.2 is loaded as an app
since it was built as a library, it tries to load at 0
[In ArmLinux, this is forbidden,
so the kernel pushes it up to =0x1000=]

Once ld-linux.so.2 loads, it reads it argv[1] and
loads the foo_app at its preferred location (0x0800.0000)
other libraries are loaded up a the mmap area.

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 67 / 88

load address example (2)

So, in this case, the user memory map appears as

start Len Usage
0000_0000 128M ld-linux.so.2

followed by small-malloc() space
0800_0000 896M app code/data space
4000_0000 1G mmap space

lib space
large-malloc() space

8000_0000 1G stack space,
working backward from BFFF_FFE0

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 68 / 88

load address example (3)

Notice that the small malloc space
is much smaller in this case,
but this is supposed to be
for load testing and diagnostics
so it’s not too bad.

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 69 / 88

ld vs. ld.so (1)

ld is a static linker
a static library has the suffix name .a denoting archive
created by the ar utility

ld.so is a dynamic linker

so represents shared object
a suffix name of shared libraries
libraries that may be dynamically linked into programs
one library is shared among several programs

https://unix.stackexchange.com/questions/356709/difference-between-ld-and-ld-so

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 70 / 88

ld vs. ld.so (2)

A static linker links a program or library at compile time
usually as the last step in the compilation process,
creating a binary executable or a library.

A dynamic linker loads the libraries

into the process’ address space at run time.
that were dynamically linked at compile time

https://unix.stackexchange.com/questions/356709/difference-between-ld-and-ld-so

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 71 / 88

Binary executable file

a statically linked binary
with all libraries loaded into the executable itself

a dynamically linked binary
with only some libraries statically linked

https://unix.stackexchange.com/questions/356709/difference-between-ld-and-ld-so

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 72 / 88

statically linked vs dynamically linked (1)

When you statically link a file into an executable,
the contents of that file are included at link time.

When you dynamically link a file into an executable,
a pointer to the file is included in the executable
but the contents of the file are not included at link time.

https://stackoverflow.com/questions/311882/what-do-statically-linked-and-dynamically-linked-mean

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 73 / 88

statically linked vs dynamically linked (2)

these dynamically linked files are not bought in
until you run the executable

they are only bought into the in-memory copy
of the executable, not the one on disk.

no files are modified on the disk
a shared library is shared across several processes

statically linked files are ’locked’ to the executable at link time
so they never change
A dynamically linked file referenced by an executable
can change just by replacing the file on the disk.

https://stackoverflow.com/questions/311882/what-do-statically-linked-and-dynamically-linked-mean

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 74 / 88

library built with -fPIC

the vast majority of pages are exactly the same for every process

processes a and b may
load the library at different logical addresses,
but they will point to the same physical pages:
thus, the memory will be shared.
the data in RAM exactly matches what is on disk,
so it can be loaded only when needed by the page fault handler.

https://unix.stackexchange.com/questions/116327/loading-of-shared-libraries-and-ram-usage

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 75 / 88

library built without -fPIC

most pages of the library will need link edits, and will be different.
they must be separate physical pages (as they contain different data).
that means they’re not shared.
the pages don’t match what is on disk
the entire library could be loaded
subsequently be swapped out to disk (in the swapfile)

https://stackoverflow.com/questions/311882/what-do-statically-linked-and-dynamically-linked-mean

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 76 / 88

shared library and re-entrant code (1)

the concept of re-entrant code, i.e.,
programs that cannotmodify themselves while running.
it is necessary to write libraries.

re-entrant code is useful for shared libraries
Some functions in a library may be reentrant, whereas
others in the same library are non-reentrant.

A library is reentrant if and only if
all of the functions in it are reentrant.

http://cs.boisestate.edu/~amit/teaching/297/notes/libraries-and-plugins-handout.pdf
https://bytes.com/topic/c/answers/528112-basic-doubt-shared-libraries

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 77 / 88

shared library and re-entrant code (2)

a shared library does not need to be reentrant
the code area of the library is shared by multiple processes
the data area of the library is copied separately for each process

reentrant codes are required when running in multi-thread

http://cs.boisestate.edu/~amit/teaching/297/notes/libraries-and-plugins-handout.pdf
https://bytes.com/topic/c/answers/528112-basic-doubt-shared-libraries

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 78 / 88

load time dynamic linking vs. run time dynamic linking

load-time dynamic linking is
when symbols in the library that are referenced
by the executable (or another library) are handled
when the executable / library is loaded into memory, by the os

run-time dynamic linking is
when you use an API provided by the OS
or through a library to load a .so when you need it,
and perform the symbol resolution then.

https://stackoverflow.com/questions/2055840/difference-between-load-time-dynamic-linking-and-run-time-dynamic-linking

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 79 / 88

At the link time (1)

ld is not called at either compile or run time

only at the link step is /usr/bin/ld is invoked.

a link step is performed as a final step
in producing an executable, or a shared library

this is called static linking, to differentiate this step
from dynamic loading that will happen at run time

on Linux, ld is part of the binutils package.

https://stackoverflow.com/questions/52118756/is-ld-called-at-both-compile-time-and-runtime

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 80 / 88

At the link time (2)

The linker records

which shared libraries are required at the run time,
possibly which versions of libraries or symbols are required.
which run time loader should be used

The kernel loads executable into memory, and checks
whether the run time loader was requested at static link time.
If it was, the dynamic loader is also loaded into memory,
and execution control is passed to it (instead of the main executable).

https://stackoverflow.com/questions/52118756/is-ld-called-at-both-compile-time-and-runtime

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 81 / 88

At the link time (3)

then the dynamic loader is to examine the executable
for instructions on which other libraries are required,
check whether correct versions can be found,
load them into memory, and prepare symbol resolution
between the main executable and the shared libraries.

This is the run time loading step,
often also called dynamic linking

The dynamic loader can be part of the OS,
but on Linux it’s part of libc
(GLIBC, uClibc and musl each have their own loader).

https://stackoverflow.com/questions/52118756/is-ld-called-at-both-compile-time-and-runtime

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 82 / 88

ld-linux.so vs. ld.so

The programs ld.so and ld-linux.so find and load
the shared libraries require by a program,
prepare the program to run, and then run it.

linux binaries require dynamic linking (linking at run time)
unless the -static option was given to ld(1) during compilation.

ld.so handles a.out binaries (a format used long ago)
ld-linux.so handles ELF

/lib/ld-linux.so.1 for libc5,
/lib/ld-linux.so.2 for glibc2

https://linux.die.net/man/8/ld-linux

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 83 / 88

glibc

1 C library described in ANSI,c99,c11 standards.

It includes macros, symbols, function implementations etc.
(printf(), malloc() etc)

2 POSIX standard library.

he "userland" glue of system calls. (open(), read() etc.
no actual implementations of system calls. (kernel does it)
but glibc provides the user land interface to the services
provided by kernel so that user application
can use a system call just like a ordinary function.

3 Also some nonstandard but useful stuff.

https://linux.die.net/man/8/ld-linux

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 84 / 88

ld-linux.so (1)

ld.so, ld-linux.so are linux’s dynamic loader / linker

most modern programs are dynamically linked
when a dynamically linked application is loaded
by the operating system, the dynamic loader must
locate and load the dynamic libraries it needs for execution.

on linux, that job is handled by ld-linux.so.2

you can see the libraries used by a given application
with the ldd command:

https://www.cs.virginia.edu/~dww4s/articles/ld_linux.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 85 / 88

ld-linux.so (2)

The dynamic linker can be executed either indirectly
by running some dynamically linked program or shared object

the dynamic linker is specified in the .interp section
of an ELF file - the program to be executed
no command-line options to the dynamic linker

executed directly by the command-line

/lib/ld-linux.so.* [OPTIONS] [PROGRAM [ARGUMENTS]]

man ld-linux.so

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 86 / 88

ld-linux.so (3)

run time linker for dynamic objects
a dynamic applications

consist of one or more dynamic objects
typically a dynamic executable and
one or more shared object dependencies

In Solaris, this interpreter is referred to
as the run time linker

dynamic linker
dynamic loader

https://docs.oracle.com/cd/E19253-01/816-5165/ld.so.1-1/index.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 87 / 88

ld-linux.so (4)

As part of the initialization and execution
of a dynamic application, an interpreter is called

this interpreter completes
the binding of the application
to its shared object dependencies.

https://docs.oracle.com/cd/E19253-01/816-5165/ld.so.1-1/index.html

Young W. Lim ELF1 7A Relocation Background - ELF Study 19992019-05-08 Wed 88 / 88

	Based on
	Overview
	Relocs and memory locations
	Symbols and sections
	Global and local symbol relocs
	PIC relocation
	In the code
	In the PLT
	In the GOT

	Load addresses
	Static and dynamic linkers

