Measurement of Correlation Functions

Young W Lim

October 13, 2020

Copyright (c) 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.

Based on Probability, Random Variables and Random Signal Principles, P.Z. Peebles, Jr. and B. Shi

Outline

in the real world, we can never measure the true correlation functions

of two random processes X(t) and Y(t)

- each sample realization of a process is a time function
- collecting many independent sample functions costs a lot
- cannot have all sample functions of the ensemble
- can have only a portion of one sample function from each process

- can determine time averages based on finite time portion of single sample functions
- because we are able to work only with time functions, we are forced to presume that the given processe satisfy appropriate ergodic theorems

a possible system for measuring the approximate time cross-correlation function of two <u>cross-correlation-ergodic</u> and stationary random processes X(t) and Y(t)

- sample functions x(t) and y(t) are delayed by amounts T and $T \tau$, respectively
- the product of the delayed waveforms
- integrate to form the output which equals the integral at time $t_1 + 2T_s$, where t_1 is arbitrary and 2T is the integration period

- sample functions x(t) and y(t) are delayed by amounts T and $T \tau$, respectively x(t+T) and $y(t+T-\tau)$
- the product of the delayed waveforms
- integrate to form the output which equals the integral at time $t_1 + 2T_s$, where t_1 is arbitrary and 2T is the integration period

$$R_o(t_1+2T) = \frac{1}{2T} \int_{t_1}^{t_1+2T} x(t+T)y(t+T+\tau)dt$$

Time Cross-correlation function measurement system *N* Gaussian random variables

Definition

assume x(t) and y(t) exist at least during the interval $t \ge -T$ and that $t_1 \ge 0$ is an arbitrary time instant and that $\tau \le T$ then the output is as follows

$$R_{o}(t_{1}+2T) = \frac{1}{2T} \int_{t_{1}}^{t_{1}+2T} x(t+T) \cdot y(t+T-\tau) dt$$
$$= \frac{1}{2T} \int_{t_{1}-T}^{t_{1}+T} x(t)y(t+\tau) dt$$

Time Cross-correlation function measurement system N Gaussian random variables

Definition

$$R_o(t_1+2T) = \frac{1}{2T} \int_{t_1-T}^{t_1+T} x(t)y(t+\tau)dt$$

if we choose $t_1 = 0$ and assume T is large

$$R_o(2T) = \frac{1}{2T} \int_{-T}^{+T} x(t)y(t+\tau)dt \approx R_{XY}(\tau)$$

Time Cross-correlation function measurement system *N* Gaussian random variables

Definition

for cross-correlation ergodic processes, approximately measuring cross-correlation τ is varied to obtain the complete function

$$R_o(2T) = \frac{1}{2T} \int_{-T}^{+T} x(t)y(t+\tau)dt \approx R_{XY}(\tau)$$

Definition

measuring auto-correlation functions

$$R_o(2T) = \frac{1}{2T} \int_{-T}^{+T} x(t)y(t+\tau)dt = R_{XY}(\tau)$$

by applying x(t) and x(t)

$$R_o(2T) = \frac{1}{2T} \int_{-T}^{+T} x(t)x(t+\tau)dt = R_{XX}(\tau)$$

by applying y(t) and y(t)

$$R_o(2T) = \frac{1}{2T} \int_{-T}^{+T} y(t)y(t+\tau)dt = R_{YY}(\tau)$$