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Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps
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Data Constructor 

data Color = Red | Green | Blue

Color is a type

Red is a constructor that contains a value of type Color. 

Green is a constructor that contains a value of type Color. 

Blue  is a constructor that contains a value of type Color. 

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor
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Data Constructor with Parameters 

data Color = RGB Int Int Int

Color is a type

RGB is not a value but a function taking three Int’s and returning a value

RGB :: Int -> Int -> Int -> Color

RGB is a data constructor that is a function 

taking three Int values as its arguments, 

and then uses them to construct a new value. 

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor
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Type Constructor 

Consider a binary tree to store Strings

data SBTree = Leaf String  |   Branch String SBTree SBTree

a type 

SBTree is a type 

Leaf is a data constructor (a function)

Branch  is a data constructor (a function)

Leaf :: String -> SBTree

Branch :: String -> SBTree -> SBTree -> SBTree

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor
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Similar Type Constructors

Consider a binary tree to store Strings

data SBTree = Leaf String  |   Branch String SBTree SBTree

Consider a binary tree to store Bool

data BBTree = Leaf Bool  |  Branch Bool BBTree BBTree

Consider a binary tree to store a parameter type

data BTree a = Leaf a  |   Branch a (BTree a) (BTree a)

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor
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Type Constructor with a Parameter

Type constructors

Both SBTree and BBTree are type constructors 

data SBTree = Leaf String  |   Branch String SBTree SBTree

data BBTree = Leaf Bool   |  Branch Bool BBTree BBTree

data BTree a = Leaf a  |   Branch a (BTree a) (BTree a)

Now we introduce a type variable a as a parameter to the type constructor. 

BTree has become a function. 

It takes a type as its argument and it returns a new type.

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor
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Type Constructors and Data Constructors

A type constructor  
● a "function" that takes 0 or more types 
● gives you back a new type.

Type constructors with parameters 

allows slight variations in types

A data constructor  
● a "function" that takes 0 or more values 
● gives you back a new value.

Data constructors with parameters 

allows slight variations in values 

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor

RGB 12 92 27

#0c5c1b

RGB 255 0 0 

RGB 0 255 0 

RGB 0 0 255 

type SBTree = BTree String

type BBTree = BTree Bool
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( )  

( ) is both a type and a value. 

( ) is a special type,  pronounced “unit”, 

has one value ( ), sometimes pronounced “void” 

 the unit type has only one value which is called unit.

( ) :: ( )    

It is the same as the void type void in Java or C/C++. 

https://stackoverflow.com/questions/20380465/what-do-parentheses-used-on-their-own-mean

Type :: Expression
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Unit Type 

a unit type is a type that allows only one value (and thus can hold no information).

It is the same as the void type void in Java or C/C++. 

:t

Expression :: Type

data Unit = Unit

Prelude> :t Unit 

Unit :: Unit

Prelude> :t ()

() :: ()

https://stackoverflow.com/questions/20380465/what-do-parentheses-used-on-their-own-mean



Background (1A)
Constructors 12 Young Won Lim

11/30/17

data Tconst Tvar … Tvar = Vconst type … type |  … 

        Vconst type … type  

Tconst (Type Constructor) is added to the type language

Vconst (Value Constructor) is added to the expression language  and its pattern sublanguage 

must not appear in types 

Argument types in Vconst type … type 

are the types given to the arguments (Tconst Tvar … Tvar)  

are used in expressions 

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Type Language and Expression Language 

A new datatype declaration 
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data Tree a = Leaf |  Node (Tree a) (Tree a) 

Tree (Type Constructor) 

Leaf or Node (Value Constructor) 

data ( ) = ( )

( ) (Type Constructor) 

( ) (Value Constructor)

 

the type (), often pronounced "Unit"

the value (), sometimes  pronounced "void" 

the type () containing only one value ()

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Datatype Declaration Examples

data Type = Value
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    type String = [Char]      

    phoneBook :: [(String,String)]  

    type PhoneBook = [(String,String)]  

    phoneBook :: PhoneBook 

    type PhoneNumber = String  

    type Name = String  

    type PhoneBook = [(Name,PhoneNumber)] 

    phoneBook :: PhoneBook 

 

http://learnyouahaskell.com/making-our-own-types-and-typeclasses

Type Synonyms

    phoneBook =      

        [("betty","555-2938")     

        ,("bonnie","452-2928")     

        ,("patsy","493-2928")     

        ,("lucille","205-2928")     

        ,("wendy","939-8282")     

        ,("penny","853-2492")     

        ] 
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type Bag a = a -> Int

data Gems = Sapphire | Emerald | Diamond deriving (Show)

https://stackoverflow.com/questions/14166641/haskell-type-synonyms-for-functions

Type Synonyms for Functions

a -> Int

a Int

Bag a 

a Int
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type Bag a = a -> Int

data Gems = Sapphire | Emerald | Diamond deriving (Show)

myBag :: Bag Gems

emptyBag :: Bag Gems

https://stackoverflow.com/questions/14166641/haskell-type-synonyms-for-functions

Type Synonyms for Functions

emptyBag
a Int

myBag
a Int
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type Bag a = a -> Int

data Gems = Sapphire | Emerald | Diamond deriving (Show)

myBag :: Bag Gems

myBag Sapphire = 3

myBag Diamond = 2

myBag Emerald = 0 

emptyBag :: Bag Gems

emptyBag Sapphire = 0

emptyBag Diamond = 0

emptyBag Emerald = 0

https://stackoverflow.com/questions/14166641/haskell-type-synonyms-for-functions

Type Synonyms for Functions

emptyBag
a Int

Sapphire

Diamond

Emerald

0

0

0

myBag
a Int

Sapphire

Diamond

Emerald

3

2

0
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data Configuration = Configuration

    { username   :: String

    , localHost     :: String

    , currentDir    :: String

    , homeDir     :: String

    , timeConnected :: Integer

    }

username :: Configuration -> String -- accessor function  (automatic) 

localHost :: Configuration -> String

-- etc.

changeDir :: Configuration -> String -> Configuration -- update function 

changeDir cfg newDir =

    if directoryExists newDir -- make sure the directory exists

        then cfg { currentDir = newDir }

        else error "Directory does not exist"

https://en.wikibooks.org/wiki/Haskell/More_on_datatypes

Record Syntax (named field) 
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data newtype

Data can only be replaced with newtype

if the type has exactly one constructor with exactly one field inside it. 

It ensures that the trivial wrapping and unwrapping 

of the single field is eliminated by the compiler. 

simple wrapper types such as State are usually defined with newtype.

type : used for type synonyms

 

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

newtype and data

newtype State s a = State { runState :: s -> (s, a) }
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newtype Fd = Fd CInt

-- data Fd = Fd CInt would also be valid

 

-- newtypes can have deriving clauses just like normal types

newtype Identity a = Identity a

  deriving (Eq, Ord, Read, Show)

 

-- record syntax is still allowed, but only for one field

newtype State s a = State { runState :: s -> (s, a) }

 

-- this is *not* allowed:

-- newtype Pair a b = Pair { pairFst :: a, pairSnd :: b }

-- but this is:

– data Pair a b = Pair { pairFst :: a, pairSnd :: b }

-- and so is this:

newtype NPair a b = NPair (a, b)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

newtype examples
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