
Young Won Lim
11/30/17

Background – Constructors (1A)

Young Won Lim
11/30/17

 Copyright (c) 2016 - 2017 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

Background (1A)
Constructors 3 Young Won Lim

11/30/17

Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

Background (1A)
Constructors 4 Young Won Lim

11/30/17

Data Constructor

data Color = Red | Green | Blue

Color is a type

Red is a constructor that contains a value of type Color.

Green is a constructor that contains a value of type Color.

Blue is a constructor that contains a value of type Color.

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor

Background (1A)
Constructors 5 Young Won Lim

11/30/17

Data Constructor with Parameters

data Color = RGB Int Int Int

Color is a type

RGB is not a value but a function taking three Int’s and returning a value

RGB :: Int -> Int -> Int -> Color

RGB is a data constructor that is a function

taking three Int values as its arguments,

and then uses them to construct a new value.

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor

Background (1A)
Constructors 6 Young Won Lim

11/30/17

Type Constructor

Consider a binary tree to store Strings

data SBTree = Leaf String | Branch String SBTree SBTree

a type

SBTree is a type

Leaf is a data constructor (a function)

Branch is a data constructor (a function)

Leaf :: String -> SBTree

Branch :: String -> SBTree -> SBTree -> SBTree

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor

Background (1A)
Constructors 7 Young Won Lim

11/30/17

Similar Type Constructors

Consider a binary tree to store Strings

data SBTree = Leaf String | Branch String SBTree SBTree

Consider a binary tree to store Bool

data BBTree = Leaf Bool | Branch Bool BBTree BBTree

Consider a binary tree to store a parameter type

data BTree a = Leaf a | Branch a (BTree a) (BTree a)

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor

Background (1A)
Constructors 8 Young Won Lim

11/30/17

Type Constructor with a Parameter

Type constructors

Both SBTree and BBTree are type constructors

data SBTree = Leaf String | Branch String SBTree SBTree

data BBTree = Leaf Bool | Branch Bool BBTree BBTree

data BTree a = Leaf a | Branch a (BTree a) (BTree a)

Now we introduce a type variable a as a parameter to the type constructor.

BTree has become a function.

It takes a type as its argument and it returns a new type.

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor

Background (1A)
Constructors 9 Young Won Lim

11/30/17

Type Constructors and Data Constructors

A type constructor
● a "function" that takes 0 or more types
● gives you back a new type.

Type constructors with parameters

allows slight variations in types

A data constructor
● a "function" that takes 0 or more values
● gives you back a new value.

Data constructors with parameters

allows slight variations in values

https://stackoverflow.com/questions/18204308/haskell-type-vs-data-constructor

RGB 12 92 27

#0c5c1b

RGB 255 0 0

RGB 0 255 0

RGB 0 0 255

type SBTree = BTree String

type BBTree = BTree Bool

Background (1A)
Constructors 10 Young Won Lim

11/30/17

()

() is both a type and a value.

() is a special type, pronounced “unit”,

has one value (), sometimes pronounced “void”

 the unit type has only one value which is called unit.

() :: ()

It is the same as the void type void in Java or C/C++.

https://stackoverflow.com/questions/20380465/what-do-parentheses-used-on-their-own-mean

Type :: Expression

Background (1A)
Constructors 11 Young Won Lim

11/30/17

Unit Type

a unit type is a type that allows only one value (and thus can hold no information).

It is the same as the void type void in Java or C/C++.

:t

Expression :: Type

data Unit = Unit

Prelude> :t Unit

Unit :: Unit

Prelude> :t ()

() :: ()

https://stackoverflow.com/questions/20380465/what-do-parentheses-used-on-their-own-mean

Background (1A)
Constructors 12 Young Won Lim

11/30/17

data Tconst Tvar … Tvar = Vconst type … type | …

 Vconst type … type

Tconst (Type Constructor) is added to the type language

Vconst (Value Constructor) is added to the expression language and its pattern sublanguage

must not appear in types

Argument types in Vconst type … type

are the types given to the arguments (Tconst Tvar … Tvar)

are used in expressions

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Type Language and Expression Language

A new datatype declaration

Background (1A)
Constructors 13 Young Won Lim

11/30/17

data Tree a = Leaf | Node (Tree a) (Tree a)

Tree (Type Constructor)

Leaf or Node (Value Constructor)

data () = ()

() (Type Constructor)

() (Value Constructor)

the type (), often pronounced "Unit"

the value (), sometimes pronounced "void"

the type () containing only one value ()

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Datatype Declaration Examples

data Type = Value

Background (1A)
Constructors 14 Young Won Lim

11/30/17

 type String = [Char]

 phoneBook :: [(String,String)]

 type PhoneBook = [(String,String)]

 phoneBook :: PhoneBook

 type PhoneNumber = String

 type Name = String

 type PhoneBook = [(Name,PhoneNumber)]

 phoneBook :: PhoneBook

http://learnyouahaskell.com/making-our-own-types-and-typeclasses

Type Synonyms

 phoneBook =

 [("betty","555-2938")

 ,("bonnie","452-2928")

 ,("patsy","493-2928")

 ,("lucille","205-2928")

 ,("wendy","939-8282")

 ,("penny","853-2492")

]

Background (1A)
Constructors 15 Young Won Lim

11/30/17

type Bag a = a -> Int

data Gems = Sapphire | Emerald | Diamond deriving (Show)

https://stackoverflow.com/questions/14166641/haskell-type-synonyms-for-functions

Type Synonyms for Functions

a -> Int

a Int

Bag a

a Int

Background (1A)
Constructors 16 Young Won Lim

11/30/17

type Bag a = a -> Int

data Gems = Sapphire | Emerald | Diamond deriving (Show)

myBag :: Bag Gems

emptyBag :: Bag Gems

https://stackoverflow.com/questions/14166641/haskell-type-synonyms-for-functions

Type Synonyms for Functions

emptyBag
a Int

myBag
a Int

Background (1A)
Constructors 17 Young Won Lim

11/30/17

type Bag a = a -> Int

data Gems = Sapphire | Emerald | Diamond deriving (Show)

myBag :: Bag Gems

myBag Sapphire = 3

myBag Diamond = 2

myBag Emerald = 0

emptyBag :: Bag Gems

emptyBag Sapphire = 0

emptyBag Diamond = 0

emptyBag Emerald = 0

https://stackoverflow.com/questions/14166641/haskell-type-synonyms-for-functions

Type Synonyms for Functions

emptyBag
a Int

Sapphire

Diamond

Emerald

0

0

0

myBag
a Int

Sapphire

Diamond

Emerald

3

2

0

Background (1A)
Constructors 18 Young Won Lim

11/30/17

data Configuration = Configuration

 { username :: String

 , localHost :: String

 , currentDir :: String

 , homeDir :: String

 , timeConnected :: Integer

 }

username :: Configuration -> String -- accessor function (automatic)

localHost :: Configuration -> String

-- etc.

changeDir :: Configuration -> String -> Configuration -- update function

changeDir cfg newDir =

 if directoryExists newDir -- make sure the directory exists

 then cfg { currentDir = newDir }

 else error "Directory does not exist"

https://en.wikibooks.org/wiki/Haskell/More_on_datatypes

Record Syntax (named field)

Background (1A)
Constructors 19 Young Won Lim

11/30/17

data newtype

Data can only be replaced with newtype

if the type has exactly one constructor with exactly one field inside it.

It ensures that the trivial wrapping and unwrapping

of the single field is eliminated by the compiler.

simple wrapper types such as State are usually defined with newtype.

type : used for type synonyms

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

newtype and data

newtype State s a = State { runState :: s -> (s, a) }

Background (1A)
Constructors 20 Young Won Lim

11/30/17

newtype Fd = Fd CInt

-- data Fd = Fd CInt would also be valid

-- newtypes can have deriving clauses just like normal types

newtype Identity a = Identity a

 deriving (Eq, Ord, Read, Show)

-- record syntax is still allowed, but only for one field

newtype State s a = State { runState :: s -> (s, a) }

-- this is *not* allowed:

-- newtype Pair a b = Pair { pairFst :: a, pairSnd :: b }

-- but this is:

– data Pair a b = Pair { pairFst :: a, pairSnd :: b }

-- and so is this:

newtype NPair a b = NPair (a, b)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

newtype examples

Young Won Lim
11/30/17

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21

