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In mathematics, especially in applications of linear algebra to
physics, the Einstein notation or Einstein summation convention
is a notational convention that implies summation over a set of
indexed terms in a formula, thus achieving notational brevity. As part
of mathematics it is a notational subset of Ricci calculus; however, it
is often used in applications in physics that do not distinguish
between tangent and cotangent spaces. It was introduced to physics
by Albert Einstein in 1916.!1]




U pper Indices

Statement of convention [edit]

According to this convention, when an index variable appears twice in a single
term and is not otherwise defined (see free and bound variables), it implies
summation of that term over all the values of the index. So where the indices
can range over the set {1, 2, 3},

3
Yy = Zc,-:r' = ¢zt + c? + eax?
i=1

is simplified by the convention to:

y =

The upper indices are not exponents but are indices of coordinates,

L. _ . _ . ¥
coefficients or basis vectors. That is, in this context x~ should be understood

as the second component of X rather than the square of X (this can
occasionally lead to ambiguity). Typically [_r], ,12, _13} would be equivalent to
the traditional (x. v. 7).




Tensor Product & Dmﬂ)\}g

The value of the Einstein convention is that it applies to other vector spaces
built from V using the (enscrr pmducﬁandf uahty) For example, V" & V. the
tensor product of V wnh itself, has a basis consisting of tensors of the form

e;; = €; & e;| Any tensor T'in V' & V can be written as:

= Tuet'ﬂ

1/*, the dual of |/, has a basis e!, e2, ..., e" which obeys the rule o

e'(e;) = 4. —
where ) is the Kronecker delta. As
Hom(V.W)=V"@ W

the row-column coordinates on a matrix correspond to the upper-lower indices

on the tensor product.
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Examples

In Einstein notation, the usual element reference _-1mn for the mith row and

nth column of matrix A becomes _-'lm‘n. We can then write the following
operations in Einstein notation as follows.

) Inner product (hence also vector dot product)

Using an orthogonal basis, the inner product is the sum of corresponding

components multiplied together:

v = s
u-v = uv

This can also be calculated by multiplying the covector on the vector.

) Vector cross product

Again using an orthogonal basis (in 3d) the cross product intrinsically involves

summations over permutations of components:

ik
uxv=c;uve

where

i il
Ejh-.—d-‘ffjk

and €; jk is the Levi-Civita symbol. Based on this definition of €, there is no

difference between E: jk and €; jk but the position of indices.




Examples

) Matrix multiplication

The matrix product of two matrices .-1,-}- and B jk Ist

N
C;’ﬁ-_ —_ (AB);;; —_— Z."l;‘ijk

j=1

equivalent to

C'y = A B,

. Trace

For a square matrix 4-1’}-, the trace is the sum of the diagonal elements,

ol

hence the sum over a common index -‘111"

> Outer product

The outer product of the column vector uf by the row vector U yields an

m x n matrix A:
i i i
Al =d'y; = (w)’

Since i and j represent two different indices, there is no summation and the

indices are not eliminated by the multiplication.




Examples

>Rai5ing and lowering indices

Given a tensor, one can raise an index or lower an index by contracting the

tensor with the metric tensor, gp,,-. For example, take the tensor Tﬂ 4, one
can raise an index;

Ty

Or one can lower an index:

L= QMTUﬁ
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