Complex Series (3B)

Copyright (c) 2012, 2013 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Taylor Series - real

As the degree of the Taylor polynomial rises, it approaches the correct function. This image shows $\sin (x)$ and its Taylor approximations, polynomials of degree 1, 3, 5, 7, 9, 11 and 13.

The Taylor polynomials for $\log (1+x)$ only provide accurate approximations in the range $-1<x \leq 1$. Note that, for $x>1$, the Taylor polynomials of higher degree are worse approximations.

Taylor Series - real

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+\cdots
$$

around $x=a$

$$
f(x)=f(b)+f^{\prime}(b)(x-b)+\frac{f^{\prime \prime}(b)}{2!}(x-b)^{2}+\cdots+\frac{f^{(n)}(b)}{n!}(x-b)^{n}+\cdots
$$

around $x=b$

Taylor Series Expansion - sin(x)

$$
\begin{aligned}
& f(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!} \quad \text { Taylor series expansion at } x=0 \\
& \text { for }-1<x<+1 \\
& f(x)=\sin (x) \\
& \text { for } \pi-1<x<\pi+1 \\
& g(x)=\sin (x) \\
& \text { Taylor series expansion at } x=\pi \\
& g(x)=-(x-\pi)+\frac{(x-\pi)^{3}}{3!}-\frac{(x-\pi)^{5}}{5!}+\frac{(x-\pi)^{7}}{7!}
\end{aligned}
$$

Taylor Series - real

References

[1] http://en.wikipedia.org/
[2] http://planetmath.org/
[3] M.L. Boas, "Mathematical Methods in the Physical Sciences"
[4] E. Kreyszig, "Advanced Engineering Mathematics"
[5] D. G. Zill, W. S. Wright, "Advanced Engineering Mathematics"
[6] T. J. Cavicchi, "Digital Signal Processing"

