DTFS (3A)

- CTFS and DFT
- CTFT and DFT
- DTFT and DFT
- CTFT and DFT

Copyright (c) 2009-2016 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Continuous Time vs. Discrete Time

$$
\begin{aligned}
& \text { Period T } \\
& \text { Number } N \\
& \text { of Samples } \\
& \begin{array}{l}
\text { Sample } \\
\text { Instant }
\end{array} \quad t=n \frac{T}{N}
\end{aligned}
$$

Two Types of Orthogonal Sinusoids

$$
e^{+j\left(\frac{2 \pi}{T}\right) k t}
$$

$$
k \omega_{0} t=\left(\frac{2 \pi}{T}\right) k t
$$

$$
e^{+j\left(\frac{2 \pi}{T}\right)(1) t}
$$

$$
\begin{aligned}
& 0 \leq t \leq T \\
& k=-2,-1,0,+1,+2, \ldots
\end{aligned}
$$

$e^{+j\left(\frac{2 \pi}{N}\right)(1) n}$

$$
\begin{aligned}
& \boldsymbol{n}=0,1,2, \ldots, N-1 \\
& \boldsymbol{k}=0,1,2, \ldots, N-1
\end{aligned}
$$

$$
e^{+j\left(\frac{2 \pi}{N}\right) k n}
$$

$$
\boldsymbol{k}\left(\frac{2 \pi}{T}\right) \boldsymbol{n}\left(\frac{T}{N}\right)=\left(\frac{2 \pi}{N}\right) \boldsymbol{k} \boldsymbol{n} \quad\left(\frac{2 \pi}{N}\right)
$$

Two Types of Inner Products

$f_{0}=1 / T$
$\omega_{0}=2 \pi / T$

$\frac{1}{T}\left\langle x(\boldsymbol{t}), e^{+j(1) \omega_{0} t}\right\rangle=C_{1}$
$\left\langle e^{+j(1) \omega_{0} t}, e^{+j(1) \omega_{0} t}\right\rangle=T$
$\frac{1}{N}\left\langle x[\boldsymbol{n}], e^{+j\left(\frac{2 \pi}{N}\right) \boldsymbol{n}(1)}\right\rangle=\gamma_{1}$
$\left\langle e^{+j\left(\frac{2 \pi}{N}\right) \boldsymbol{n}(1)}, e^{+j\left(\frac{2 \pi}{N}\right) \boldsymbol{n}(1)}\right\rangle=N$

Inner Product Representations

$$
\begin{aligned}
& x(t)<\text { invertible } \rightarrow C_{k} \\
& \frac{1}{T} \int_{0}^{T} x(t) e^{-j k \omega_{0} t} d t=C_{k} \\
& \frac{\left\langle x(t), e^{+j(2 \pi / T) k t}\right\rangle}{\left\langle e^{+j(2 \pi / T) k t}, e^{+j(2 \pi / T) k t}\right\rangle}=C_{k} \\
& x[\boldsymbol{n}]<\gamma_{k} \\
& \frac{1}{N} \sum_{n=0}^{N-1} x[\boldsymbol{n}] e^{-j\left(\frac{2 \pi}{N}\right) n k}=\gamma_{k} \\
& \frac{\left\langle x(\boldsymbol{t}), e^{+j(2 \pi / N) k \boldsymbol{n}}\right\rangle}{\left\langle e^{+j(2 \pi / N) k n}, e^{+j(2 \pi / N) k n}\right\rangle}=\gamma_{k}
\end{aligned}
$$

CTFS and DTFS

Continuous Time $x(t)$

$$
\begin{array}{r}
x(t)=\sum_{k=-\infty}^{+\infty} C_{k} e^{+j k \omega_{0} t} \\
0 \leq t \leq T
\end{array}
$$

$$
C_{k}=\frac{1}{T} \int_{0}^{T} x(t) e^{-j k \omega_{0} t} d t
$$

$$
k=-2,-1,0,+1,+2, \ldots
$$

CTFS

Discrete Time $x[\boldsymbol{n}]$

$$
\begin{aligned}
x[\boldsymbol{n}] & =\sum_{k=-M}^{+M} \gamma_{k} e^{+j\left(\frac{2 \pi}{N}\right) k \boldsymbol{n}} \\
\boldsymbol{n} & =0,1,2, \ldots, N-1, \\
\gamma_{k} & =\frac{1}{N} \sum_{n=0}^{N-1} x[\boldsymbol{n}] e^{-j\left(\frac{2 \pi}{N}\right) k \boldsymbol{n}} \\
\boldsymbol{k} & =-M, \ldots, 0, \ldots,+M
\end{aligned}
$$

DTFS

$$
\begin{aligned}
\sum_{k=-M}^{+M} & =\sum_{k=0}^{N-1}=\sum_{k=k_{0}}^{k_{0}+N-1}=\sum_{k=\langle N\rangle} \\
N & =2 M+1
\end{aligned}
$$

$\gamma_{k} \quad$ Finite set of $k^{\prime} s$

Truncate CTFS Coefficients

$$
\begin{array}{r}
x(t)=\sum_{k=-\infty}^{+\infty} C_{k} e^{+j k \omega_{0} t} \\
0 \leq t \leq T
\end{array}
$$

$$
\begin{aligned}
C_{k} & =\frac{1}{T} \int_{0}^{T} x(t) e^{-j k \omega_{0} t} d t \\
& k=-2,-1,0,+1,+2, \ldots
\end{aligned}
$$

Infinite set of k 's CTFS

$$
\begin{aligned}
& x(t) \approx \sum_{k=-M}^{+M} C_{k} e^{+j k \omega_{0} t} \quad N=2 M+1 \\
& \text { synthesis with truncated coefficients }
\end{aligned}
$$

Use a finite subset of \mathbf{N} coefficients

Approximated Coefficients

$$
\begin{aligned}
x[\boldsymbol{n}] & =\sum_{k=-M}^{+M} \gamma_{k} e^{+j\left(\frac{2 \pi}{N}\right)_{k n}} \\
\boldsymbol{n} & =0,1,2, \ldots, N-1, \\
\gamma_{k} & =\frac{1}{N} \sum_{n=0}^{N-1} x[\boldsymbol{n}] e^{-j\left(\frac{2 \pi}{N}\right)_{k n}} \\
\boldsymbol{k} & =-M, \ldots, 0, \ldots,+M
\end{aligned}
$$

DTFS

Approximated Synthesis

$$
x(t)=\sum_{k=-\infty}^{+\infty} C_{k} e^{+j k \omega_{0} t}
$$

$$
x_{F S}(t)=\sum_{k=-M}^{+M} \gamma_{k} e^{+j \boldsymbol{k} \omega_{0} t}
$$

$$
\begin{gathered}
x[\boldsymbol{n}]=\sum_{k=-M}^{+M} \gamma_{k} e^{+j\left(\frac{2 \pi}{N}\right) k n} \\
\boldsymbol{n}=0,1,2, \ldots, N-1, \\
\gamma_{k}= \\
\frac{1}{N} \sum_{n=0}^{N-1} x[\boldsymbol{n}] e^{-j\left(\frac{2 \pi}{N}\right) k n} \\
\boldsymbol{k}=-M, \ldots, 0, \ldots,+M
\end{gathered}
$$

DTFS

CTFS, DTFS, and DFT

$$
\begin{aligned}
& x(t)=\sum_{k=-\infty}^{+\infty} C_{k} e^{+j k \omega_{0} t} \\
& 0 \leq t \leq T \\
& C_{k}=\frac{1}{T} \int_{0}^{T} x(t) e^{-j k \omega_{0} t} d t \\
& k=-2,-1,0,+1,+2, \ldots
\end{aligned}
$$

CTFS

$$
\begin{gathered}
x[\boldsymbol{n}]=\sum_{k=0}^{N} \gamma_{k} e^{+j\left(\frac{2 \pi}{N}\right) k \boldsymbol{n}} \\
\boldsymbol{n}=0,1,2, \ldots, N-1 \\
\gamma_{k}=\frac{1}{N} \sum_{n=0}^{N-1} x[\boldsymbol{n}] e^{-j\left(\frac{2 \pi}{N}\right) k \boldsymbol{n}} \\
k=0,1,2, \ldots, N-1
\end{gathered}
$$

$$
\begin{gathered}
x(t) \approx \sum_{k=-M}^{+M} \gamma_{\boldsymbol{k}} e^{+j \boldsymbol{k} \omega_{0} t} \quad \begin{array}{l}
\text { Approximated } \\
\text { Synthesis }
\end{array} \\
0 \leq t \leq T \\
C_{k} \approx \gamma_{\boldsymbol{k}}=\frac{X[k]}{N} \quad \begin{array}{l}
\text { Approximated } \\
\text { Coefficients }
\end{array} \\
k=-2,-1,0,+1,+2, \ldots
\end{gathered}
$$

$$
\begin{aligned}
x[\boldsymbol{n}]= & \frac{1}{N} \sum_{k=0}^{N-1} X[\boldsymbol{k}] e^{+j\left(\frac{2 \pi}{N}\right) k \boldsymbol{n}} \\
& \boldsymbol{n}=0,1,2, \ldots, N-1 \\
X[\boldsymbol{k}]= & \sum_{n=0}^{N-1} x[\boldsymbol{n}] e^{-j\left(\frac{2 \pi}{N}\right) \boldsymbol{k} \boldsymbol{n}} \\
& \boldsymbol{k}=0,1,2, \ldots, N-1
\end{aligned}
$$

CTFT of a Sampled Signal

References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003

