
Young Won Lim
11/25/17

Side Effects (3B)

Young Won Lim
11/25/17

 Copyright (c) 2016 - 2017 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

Monad Side Effects (3B) 3 Young Won Lim
11/25/17

Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

Monad Side Effects (3B) 4 Young Won Lim
11/25/17

Imperative programming:

● variables as changeable locations in a computer's memory

● imperative programs explicitly commands

the computer what to do

functional programming

● a way to think in higher-level mathematical terms

● defining how variables relate to one another

● leaving the compiler to translate these

to the step-by-step instructions

that the computer can process.

https://en.wikibooks.org/wiki/Haskell/Variables_and_functions

Variables

Monad Side Effects (3B) 5 Young Won Lim
11/25/17

Haskell Functional Programming

● Immutability

● Recursive Definition

● No Data Dependency

https://en.wikibooks.org/wiki/Haskell/Variables_and_functions

Haskell Language Features

Monad Side Effects (3B) 6 Young Won Lim
11/25/17

imperative programming:

after setting r = 5 and then changing it to r = 2.

Hakell programming:

an error: "multiple declarations of r".

Within a given scope, a variable in Haskell

gets defined only once and cannot change,

like variables in mathematics.

https://en.wikibooks.org/wiki/Haskell/Variables_and_functions

Redefinition : not allowed

r = 5

r = 2

No mutation

In Haskell

r = 5

r = 2

Monad Side Effects (3B) 7 Young Won Lim
11/25/17

Immutable:

they can change only based on

the data we enter to run the program.

We cannot define r two ways in the same code,

but we could change the value by changing the file

https://en.wikibooks.org/wiki/Haskell/Variables_and_functions

Variables in a file

a = 100

r = 5

pi = 3.14159

e = 2.7818

Vars.hs

Monad Side Effects (3B) 8 Young Won Lim
11/25/17

$ ghci
GHCi, version 7.10.3: http://www.haskell.org/ghc/ :? for help
Prelude> :load Var1.hs
[1 of 1] Compiling Main (var.hs, interpreted)
Ok, modules loaded: Main.
*Main> r
5
*Main> :t r
r :: Integer
*Main>

*Main> :load Var2.hs
[1 of 1] Compiling Main (var2.hs, interpreted)
Ok, modules loaded: Main.
*Main> r
55

https://en.wikibooks.org/wiki/Haskell/Variables_and_functions

Loading a variable definition file

definition with initialization

:load Var1.hs

:load Var1.hs

Var1.hs
r = 5

Var2.hs
r = 55

Monad Side Effects (3B) 9 Young Won Lim
11/25/17

*Main> r = 33

<interactive>:12:3: parse error on input ‘=’

$ ghci
GHCi, version 7.10.3: http://www.haskell.org/ghc/ :? for help

Prelude> r = 333

<interactive>:2:3: parse error on input ‘=’

Prelude>

let r = 33

https://en.wikibooks.org/wiki/Haskell/Variables_and_functions

No Mutation

No mutation, Immutable

let r = 33

Monad Side Effects (3B) 10 Young Won Lim
11/25/17

imperative programming:

incrementing the variable r

(updating the value in memory)

Hakell programming:

a recursive definition of r

(defining it in terms of itself)

if r had been defined with any value beforehand,

then r = r + 1 in Haskell would bring an error message.

https://en.wikibooks.org/wiki/Haskell/Variables_and_functions

Recursive Definition

r = r + 1

Side effect, Stateful computation

Monad Side Effects (3B) 11 Young Won Lim
11/25/17

 y = x * 2 x = 3

 x = 3 y = x * 3

Hakell programming:

because the values of variables do not change

variables can be defined in any order

no mandatory : "x being declared before y"

https://en.wikibooks.org/wiki/Haskell/Variables_and_functions

No Data Dependence

Monad Side Effects (3B) 12 Young Won Lim
11/25/17

 area 5

=> { replace the LHS area r = ... by the RHS ... = pi * r^2 }

 pi * 5 ^ 2

=> { replace pi by its numerical value }

 3.141592653589793 * 5 ^ 2

=> { apply exponentiation (^) }

 3.141592653589793 * 25

=> { apply multiplication (*) }

 78.53981633974483

https://en.wikibooks.org/wiki/Haskell/Variables_and_functions

Evaluation

area r = pi * r^2

Monad Side Effects (3B) 13 Young Won Lim
11/25/17

functional programming

● leaving the compiler to translate these

to the step-by-step instructions

that the computer can process.

replace each function and variable with its definition

repeatedly replace the results until a single value remains.

to apply or call a function means

to replace the LHS of its definition by its RHS.

https://en.wikibooks.org/wiki/Haskell/Variables_and_functions

Translation to instructions

Monad Side Effects (3B) 14 Young Won Lim
11/25/17

a function or expression is said to have a side effect

if it modifies some state outside its scope or

has an observable interaction

with its calling functions or the outside world

besides returning a value.

a particular function might
● modify a global variable or static variable,
● modify one of its arguments,
● raise an exception,
● write data to a display or file,
● read data from a keyboard or file, or
● call other side-effecting functions.

https://en.wikipedia.org/wiki/Side_effect_(computer_science)

Side Effects Definition

Monad Side Effects (3B) 15 Young Won Lim
11/25/17

In the presence of side effects,

a program's behaviour may depend on history;

the order of evaluation matters.

the context and histories

Imperative programming : frequent utilization of side effects.

functional programming : side effects are rarely used.

The lack of side effects makes it easier

to do formal verifications of a program

https://en.wikipedia.org/wiki/Side_effect_(computer_science)

History, Order, and Context

Monad Side Effects (3B) 16 Young Won Lim
11/25/17

int i, j;

i = j = 3;

i = (j = 3); // j = 3 returns 3, which then gets assigned to I

// The assignment function returns 10

// which automatically casts to "true"

// so the loop conditional always evaluates to true

while (b = 10) { }

https://en.wikipedia.org/wiki/Side_effect_(computer_science)

Side Effects Examples in C

Monad Side Effects (3B) 17 Young Won Lim
11/25/17

Haskell is a pure language

programs are made of functions

that can't change

any global state or variables,

they can only do

some computations and return them results.

every variable's value does not change in time

However, some problems are inherently stateful

in that they rely on some state that changes over time.

a bit tedious to model

Haskell has the state monad features

http://learnyouahaskell.com/for-a-few-monads-more

Pure Languages

s -> (x,s)

st1 = 10

st1 (v,10)

Monad Side Effects (3B) 18 Young Won Lim
11/25/17

The functional language Haskell expresses side effects

such as I/O and

other stateful computations

using monadic actions

state monad

https://en.wikipedia.org/wiki/Side_effect_(computer_science)

Side Effects in Haskell

Monad Side Effects (3B) 19 Young Won Lim
11/25/17

a stateful computation is a function that

takes some state and

returns a value along with some new state.

That function would have the following type:

 s -> (a,s)

s is the type of the state and

a the result of the stateful computation.

http://learnyouahaskell.com/for-a-few-monads-more

Stateful Computation

s -> (a, s)

s (a, s)

Monad Side Effects (3B) 20 Young Won Lim
11/25/17

Assignment in an imperative language :

will assign the value 5 to the variable x

will have the value 5 as an expression

Assignment in a functional language

as a function that

takes a state and

returns a result and a new state

http://learnyouahaskell.com/for-a-few-monads-more

Assignment

x = 5

Monad Side Effects (3B) 21 Young Won Lim
11/25/17

Assignment in a functional language

as a function that

takes a state and

returns a result and a new state

an input state :

all the variables that have been assigned previously

a result : 5

a new state :

all the previous variable mappings plus

the newly assigned variable.

http://learnyouahaskell.com/for-a-few-monads-more

Assignment as a stateful computation

a = 1

b = 2

s -> (a, s)

s (a, s)

all the variables
that have been
assigned
previously

all the previous
variable mappings
plus the newly
assigned variabl

 a result : 5

x = 5

a = 1

b = 2

x = 5

Monad Side Effects (3B) 22 Young Won Lim
11/25/17

The stateful computation:

● a function that

➔ takes a state and

➔ returns a result and a new state

● can be considered as a value with a context

the actual value is

the result

the context is

 that we have to provide an initial state to get the result and

that apart from getting the result we also get a new state.

http://learnyouahaskell.com/for-a-few-monads-more

A value with a context

s -> (a, s)

s (a, s)

all the variables
that have been
assigned
previously

all the previous
variable mappings
plus the newly
assigned variabl

a result : 5

context

Monad Side Effects (3B) 23 Young Won Lim
11/25/17

class Monad m where

 return :: a -> m a

 (>>=) :: m a -> (a -> m b) -> m b

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/IO
https://stackoverflow.com/questions/2488646/why-are-side-effects-modeled-as-monads-in-haskell
https://stackoverflow.com/questions/7840126/why-monads-how-does-it-resolve-side-effects
https://stackoverflow.com/questions/2488646/why-are-side-effects-modeled-as-monads-in-haskell

https://www.cs.hmc.edu/~adavidso/monads.pdf

Monadic Effect

https://stackoverflow.com/questions/2488646/why-are-side-effects-modeled-as-monads-in-haskell
https://stackoverflow.com/questions/7840126/why-monads-how-does-it-resolve-side-effects
https://stackoverflow.com/questions/2488646/why-are-side-effects-modeled-as-monads-in-haskell

Monad Side Effects (3B) 24 Young Won Lim
11/25/17

Monadic operations tend to have types which look like

val-in-type-1 -> ... -> val-in-type-n -> effect-monad val-out-type

where the return type is a type application:

effect-monad val-out-type

the function tells you

which effects are possible

the argument tells you (val-out-type)

what sort of value is produced by the operation

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Monadic Operation

put :: s -> (State s) ()

putStr :: String -> IO ()

IO ()

function: effect-monad

arument: val-out-type

Monad Side Effects (3B) 25 Young Won Lim
11/25/17

put :: s -> State s ()

put :: s -> (State s) ()

one value input type s

the effect-monad State s

the value output type ()

the operation is used only for its effect;

the value delivered is uninteresting

putStr :: String -> IO ()

delivers a string to stdout but does not return anything exciting.

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Monadic Operation – put, putStr

Monad Side Effects (3B) 26 Young Won Lim
11/25/17

Generally, a monad cannot perform side effects in Haskell.

there is one exception: IO monad

Suppose there is a type called World,

which contains all the state of the external universe

A way of thinking what IO monad does

 type IO t = World -> (t, World) type synonym

https://www.cs.hmc.edu/~adavidso/monads.pdf

Side Effects of IO Monad

World -> (t, World)

putStr :: String -> IO ()

World (t, World)

Monad Side Effects (3B) 27 Young Won Lim
11/25/17

IO t is a parameterized function

input : a World

output: a value of the type t and a new updated World

obtained by modifying the given World

in the process of computing the value of the type t.

 type IO t = World -> (t, World) type synonym

https://www.cs.hmc.edu/~adavidso/monads.pdf

Type Synonym IO t

World -> (t, World)

IO t

World (t, World)

World (t, World)

Monad Side Effects (3B) 28 Young Won Lim
11/25/17

 type IO t = World -> (t, World) type synonym

https://www.cs.hmc.edu/~adavidso/monads.pdf

A Parameterized Function of IO Monad

IO t (x, world1) world0

World -> (t, World)

IO t

World (t, World)

World (t, World)

 IO t World (x, world1) ::

 x :: t

 world1 :: World

Monad Side Effects (3B) 29 Young Won Lim
11/25/17

It is impossible

to store the extra copies of the contents of your hard drive

that each of the Worlds contains

given World → updated World

https://www.cs.hmc.edu/~adavidso/monads.pdf

Implementation of IO t

Monad Side Effects (3B) 30 Young Won Lim
11/25/17

We give IO the World world0 :: World

we got back the World world1 :: World

from getting x out of its monad, x :: t

and the thing IO gives back to us is

the y with y :: t

a final version of the World world1 :: World

.

https://www.cs.hmc.edu/~adavidso/monads.pdf

IO Monad

the implementation of bind

(x,world0) (x,world1) (y,world1)

(t,World) (t,World) (t,World)

Monad Side Effects (3B) 31 Young Won Lim
11/25/17

IO 1st
the initial
World

updated
World

Which World was given initially?

Which World was updated?

In GHC, a main must be defined somewhere with type IO ()

a program execution starts from the main

the initial World is contained in the main to start everything off

the main passes the updated World from each IO

to the next IO as its initial World

an IO that is not reachable from main will never be executed

an initial / updated World is not passed to such an IO

https://www.cs.hmc.edu/~adavidso/monads.pdf

IO Monad in GHC

The modification of the World

IO 2nd updated
World

IO 3rd updated
World

Monad Side Effects (3B) 32 Young Won Lim
11/25/17

when using GHCI,

everything is wrapped in an implicit IO,

since the results get printed out to the screen.

there’s only 1 World in existence at any given moment.

Each IO takes that one and only World, consumes it,

and gives back a single new World.

Consequently, there’s no way to accidentally run out of Worlds,

or have multiple ones running around.

https://www.cs.hmc.edu/~adavidso/monads.pdf

IO Monad in GHCI

the implementation of bind

IO

current
World

updated
World

only 1 World

Monad Side Effects (3B) 33 Young Won Lim
11/25/17

Every time a new command is given to GHCI,

GHCI passes the current World to IO,

GHCI gets the result of the command back,

GHCI request to display the result

(which updates the World by modifying
● the contents of the screen or
● the list of defined variables or
● the list of loaded modules or whatever),

GHCI saves the new World to process the next command.

https://www.cs.hmc.edu/~adavidso/monads.pdf

GHCI

the implementation of bind

Monad Side Effects (3B) 34 Young Won Lim
11/25/17

instance Monad IO where

 return x world = (x, world)

 (ioX >>= f) world0 =

 let (x, world1) = ioX world0

 in f x world1 -- has type (t, World)

 type IO t = World -> (t, World) type synonym

https://www.cs.hmc.edu/~adavidso/monads.pdf

IO Monad Implementation

ioXWorld (t, World)
f

World
(t, World)

 f x world1

 world0 (x, world1)

t

x

world1 (y, world1)

(x,s) (x,s’) (y,s’)

Monad Side Effects (3B) 35 Young Won Lim
11/25/17

instance Monad IO where

 return x world = (x, world)

 (ioX >>= f) world0 =

 let (x, world1) = ioX world0

 in f x world1 -- has type (t, World)

 type IO t = World -> (t, World) type synonym

https://www.cs.hmc.edu/~adavidso/monads.pdf

Monad IO and Monad ST

instance Monad ST where

 -- return :: a -> ST a

 return x = \s -> (x,s)

 -- (>>=) :: ST a -> (a -> ST b) -> ST b

 st >>= f = \s -> let (x,s') = st s

 in f x s'

Monad Side Effects (3B) 36 Young Won Lim
11/25/17

instance Monad ST where

 -- return :: a -> ST a

 return x = \s -> (x,s)

 -- (>>=) :: ST a -> (a -> ST b) -> ST b

 st >>= f = \s -> let (x,s') = st s in f x s'

 >>= provides a means of sequencing state transformers:

st >>= f applies the state transformer st to an initial state s,

then applies the function f to the resulting value x

to give a second state transformer (f x),

which is then applied to the modified state s' to give the final result:

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

State Transformers ST

(x,s') = st s

 f x s'

st >>= f = \s -> f x s'

where (x,s') = st s

st >>= f = \s -> (y,s')

where (x,s') = st s

 (y,s') = f x s'

Monad Side Effects (3B) 37 Young Won Lim
11/25/17

The return function takes x

and gives back a function

that takes a World

and returns x along with the new, updated World (=World)

formed by not modifying the World it was given

.

https://www.cs.hmc.edu/~adavidso/monads.pdf

Monad IO - return

 return x world = (x, world)

returnx

World (x, World)

Monad Side Effects (3B) 38 Young Won Lim
11/25/17

the expression (ioX >>= f) has

type World -> (t, World)

a function ioX that takes world0 of the type World,

which is used to extract x from its IO monad.

x gets passed to f, resulting in another IO monad,

which again is a function that takes world1 of the type World

and returns a y and a new, updated World.

https://www.cs.hmc.edu/~adavidso/monads.pdf

Monad IO - >>=

the implementation of bind

ioXWorld (t, World)
f

World
(t, World)

 f x world1

 world0 (x, world1)

t

x

world1 (y, world1)

Young Won Lim
11/25/17

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

