
Conditions

Young W. Lim

2023-06-30 Fri

Young W. Lim Conditions 2023-06-30 Fri 1 / 57

Outline

1 Based on

2 Condition Codes
Condition Codes

3 Accessing the Conditon Codes

Young W. Lim Conditions 2023-06-30 Fri 2 / 57

Based on

1 "Self-service Linux: Mastering the Art of Problem Determination",
Mark Wilding

1 "Computer Architecture: A Programmer’s Perspective", Bryant &
O’Hallaron

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim Conditions 2023-06-30 Fri 3 / 57

Compling 32-bit program on 64-bit gcc

gcc -v

gcc -m32 t.c

sudo apt-get install gcc-multilib

sudo apt-get install g++-multilib

gcc-multilib

g++-multilib

gcc -m32

objdump -m i386

Young W. Lim Conditions 2023-06-30 Fri 4 / 57

TOC: Conditional codes

Young W. Lim Conditions 2023-06-30 Fri 5 / 57

Condition codes (1)

When the x86 Arithmetic Logic Unit (ALU)
performs operations like NOT and ADD,
it flags the results of these operations
("became zero", "overflowed", "became negative")
in a special 16-bit FLAGS register
32-bit processors upgraded this to 32 bits (EFLAGS)
64-bit processors upgraded this to 64 bits (RFLAGS)

https://riptutorial.com/x86/example/6976/flags-register

Young W. Lim Conditions 2023-06-30 Fri 6 / 57

Condition codes (2)

Condition Code Name Definition
E, Z Equal, Zero ZF == 1
S Overflow OF == 1
P Signed SF == 1
O Parity PF == 1
NE, NZ Not Equal, Not Zero ZF == 0
NO No Overflow OF == 0
NP Not Signed SF == 0
NS No Parity PF == 0

https://riptutorial.com/x86/example/6976/flags-register

Young W. Lim Conditions 2023-06-30 Fri 7 / 57

Condition codes (3)

Condition Code Name Definition
NC, No Carry, CF==0
AE, NB Above or Equal, Not Below CF==0
BE, NA Above, Not Below or Equal CF==0 and ZF==0
A, NBE Below or Equal, Not Above CF==1 or ZF==1
GE, NL Greater or Equal, Not Less SF==OF
L, NGE Less, Not Greater or Equal SF!=OF
G, NLE Greater, Not Less or Equal ZF==0 and SF==OF
LE, NG Less or Equal, Not Greater ZF==1 or SF!=OF

https://www.csie.ntu.edu.tw/~cyy/courses/assembly/12fall/lectures/handouts/lec14_x86isa.pdf

Young W. Lim Conditions 2023-06-30 Fri 8 / 57

Condition codes (4) ZF (zero flag)

Set whenever the previous arithmetic result was zero.
Can be used by

jz jump if last result was zero
jnz jump if last result was not zero
je jump if equal, alias of jz
jne jump if not equal, alias of jnz

because if the difference is zero,
then the two values are equal

https://www.cs.uaf.edu/2009/fall/cs301/lecture/12_07_flags.html

Young W. Lim Conditions 2023-06-30 Fri 9 / 57

Condition codes (5) CF (carry flag)

Contains the bit that carries out of an addition or subtraction.
Can be used by the jc (jump if carry flagis set) instruction.
Set by all the arithmetic instructions.
Can be added into another arithmetic operation
with adc (add with carry).

For example, you can preserve the bit overflowing
out of an add using a subsequent adc
For example, here we do a tiny 16-bit add between cx and si,
that overflows. We can catch the overflow bit and
fold it into the next higher add:

https://www.cs.uaf.edu/2009/fall/cs301/lecture/12_07_flags.html

Young W. Lim Conditions 2023-06-30 Fri 10 / 57

Condition codes (6) CF (carry flag)

adc is used in the compiler’s implementation of
the 64-bit long long datatype,
and in general in "multiple precision arithmetic" software,
like the GNU Multiple Precision Arithmetic Library.

https://www.cs.uaf.edu/2009/fall/cs301/lecture/12_07_flags.html

Young W. Lim Conditions 2023-06-30 Fri 11 / 57

Condition codes (7) CF (carry flag)

The carry flag (or overflow flag below) could also be used
to implement overflow checking in a careful compiler, like Java!
The carry and zero flags are also used
by the unsigned comparison instructions:

jb jump if unsigned below
jbe jump if unsigned below or equal
ja jump if unsigned above
jae jump if unsigned above or equal

in a fairly obvious way.
For example, a carry means a negative result, so a<b.
The zero flag means a==b

https://www.cs.uaf.edu/2009/fall/cs301/lecture/12_07_flags.html

Young W. Lim Conditions 2023-06-30 Fri 12 / 57

Condition codes (8) SF (sign flag)

indicates a negative signed result.
Used together with OF to implement signed comparison.

https://www.cs.uaf.edu/2009/fall/cs301/lecture/12_07_flags.html

Young W. Lim Conditions 2023-06-30 Fri 13 / 57

Condition codes (9) OF (overflow flag)

Set by subtract, add, and compare, and
used in the signed comparison instructions

jl jump if less than
jle jump if less than or equal to
jg jump if greater than
jge jump if greater than or equal to

instructions.

https://www.cs.uaf.edu/2009/fall/cs301/lecture/12_07_flags.html

Young W. Lim Conditions 2023-06-30 Fri 14 / 57

Condition codes (10) OF (overflow flag)

jae: jump if above or equal
unsigned >=
jump if CF==0
compute a - b
if a - b is positive or zero (a >= b)
then CF==0 and jump is taken
if a - b is negative (a < b)
then CF==1, and jump is not taken

https://www.cs.uaf.edu/2009/fall/cs301/lecture/12_07_flags.html

Young W. Lim Conditions 2023-06-30 Fri 15 / 57

Condition codes (11) OF (overflow flag)

jge: jump if greater or equal
signed >=
jump if SF==OF
if no overflow occurs in the signed a - b,
then OF==0 and SF is correct
SF==0 (positive result a >= 0)
SF==1 (negative result a < 0)
(jge is the same as jae)
if an overflow occurs in the signed a - b,
then OF==1 and SF is not correct
SF==1 (corrected positive a >= 0)
SF==0 (corrected negative a < 0)
(jge is not the same as jae)

https://www.cs.uaf.edu/2009/fall/cs301/lecture/12_07_flags.html

Young W. Lim Conditions 2023-06-30 Fri 16 / 57

Condition codes (12) OF (overflow flag)

jge: jump if greater or equal
signed >=
jump if SF==OF
in a signed compare, a carry happens
if we’re comparing negative numbers,
so CF must not be used
if an overflow occurs, then the sign bit is wrong,
so if OF==1, we compare SF==1,
which flips the comparison back the right way again.

https://www.cs.uaf.edu/2009/fall/cs301/lecture/12_07_flags.html

Young W. Lim Conditions 2023-06-30 Fri 17 / 57

Essential flags

Z Zero flag destination equals zero
S Sign flag destination is negative
C Carry flag unsigned value out of range
O Overflow flag signed value out of range

https://www.csie.ntu.edu.tw/~cyy/courses/assembly/12fall/lectures/handouts/lec14_x86isa.pdf

Young W. Lim Conditions 2023-06-30 Fri 18 / 57

Zero Flag ZF

Whenever the destination operand equals Zero,
the Zero flag is set

ZF examples
movw $1, %cx
subw $1, %cx ; %cx = 0, ZF = 1
movw $0xFFFF, %ax
incw %ax ; AX = 0, ZF = 1
incw %ax ; AX = 1, ZF = 0

https://www.csie.ntu.edu.tw/~cyy/courses/assembly/12fall/lectures/handouts/lec14_x86isa.pdf

Young W. Lim Conditions 2023-06-30 Fri 19 / 57

Sign Flag SF

the Sign flag is set when the destination operand is negative
the Sign flag is clear when the destination operand is positive

SF examples
movw $0, %cx
subw $1, %cx ; %cx = -1, SF = 1
addw $2, %cx ; %cx = 1, SF = 0

https://www.csie.ntu.edu.tw/~cyy/courses/assembly/12fall/lectures/handouts/lec14_x86isa.pdf

Young W. Lim Conditions 2023-06-30 Fri 20 / 57

Carry Flag CF

Addition : copy carry out of MSB to CF

Subtraction : copy inverted carry out of MSB to CF

INC / DEC : not affect CF
Applying NEG to a nonzero operand sets CF

CF examples
movw $0x00ff, %cx
addw $1, %ax ; %ax = 0x0100, SF = 0, ZF = 0, CF = 0
subw $1, %ax ; %cx = 0x00ff, SF = 0, ZF = 0, CF = 0
addb %1, %al ; %al = 0x00, SF = 0, ZF = 1, CF = 1
movb $0x6c, %bh
addb %0x95, %bh ; %bh = 0x01, SF = 0, ZF = 0, CF = 1

movb $2, %al
subb $3, %al ; %al = 0xff, SF = 1, ZF = 0, CF = 1

https://www.csie.ntu.edu.tw/~cyy/courses/assembly/12fall/lectures/handouts/lec14_x86isa.pdf

Young W. Lim Conditions 2023-06-30 Fri 21 / 57

Overflow Flag OF

the overflow flag is set when the signed result of an operation
is invalid or out of range

case 1: adding two positive operands produces a negative number
case 2: adding two negative operands produces a positive number

OF examples
movb $+127, %al
addb $1, %al ; %al = -128, OF = 1

movb $0x7F, %al
addb $1, %al ; %al = 0x80, OF = 1

movb $0x80, %al ; 0x80 + 0x92 = 0x112
addb $0x92, %al ; %al = 0x12, OF = 1

movb $-2, %al ; 0xfe + 0x7f = 0x17d
addb $+127 %al ; %al = 0x7d, OF = 0

https://www.csie.ntu.edu.tw/~cyy/courses/assembly/12fall/lectures/handouts/lec14_x86isa.pdf

Young W. Lim Conditions 2023-06-30 Fri 22 / 57

Signed / Unsigned Integers

all CPU instructions operate exactly the same
on signed and unsigned integers

the CPU canot distinguish between
signed and unsigned integers

the programmer are soley responsible for
using the correct data type with each instruciton

https://www.csie.ntu.edu.tw/~cyy/courses/assembly/12fall/lectures/handouts/lec14_x86isa.pdf

Young W. Lim Conditions 2023-06-30 Fri 23 / 57

Overflow / Carry Flags (1)

ADD instruction
CF : (Carry out of the MSB) : normal carry
OF : (Carry out of the MSB)

⊕
(Carry into the MSB)

SUB instruction
CF : ~(Carry out of the MSB) : inverted carry
OF : (Carry out of the MSB)

⊕
(Carry into the MSB)

https://www.csie.ntu.edu.tw/~cyy/courses/assembly/12fall/lectures/handouts/lec14_x86isa.pdf

Young W. Lim Conditions 2023-06-30 Fri 24 / 57

Overflow / Carry Flags (2)

ADD (addition) SUB (subtraction)

CF = Cn CF = Cn

normal carry of inverted carry of
a 2’s complement addition the transformed addition

OF = Cn
⊕

Cn−1 OF = Cn
⊕

Cn−1

normal carry
⊕

MSB of normal carry
⊕

MSB of
a 2’s complement addition the transformed addition

https://www.csie.ntu.edu.tw/~cyy/courses/assembly/12fall/lectures/handouts/lec14_x86isa.pdf

Young W. Lim Conditions 2023-06-30 Fri 25 / 57

Condition Codes (1)

condition code registers describe attributes
of the most recent arithmetic or logical operation
these registers can be tested to perform conditional branches
the most useful condition codes are as belows

CF Carry Flag
ZF Zero Flag
SF Sign Flag
OF Overflow Flag

Young W. Lim Conditions 2023-06-30 Fri 26 / 57

Condition Codes (2)

as a result of the most recent operation

CF a carry was generated out of the msb
used to detect overflow for unsigned operations

ZF a zero was yielded

SF a negative value was yielded

OF a 2’s complement overflow was happened
either neagtive or positive

Young W. Lim Conditions 2023-06-30 Fri 27 / 57

Condition Codes and c = a+b (1)

assume addl is used to perform t = a + b
and a, b, t are of type int

CF unsigned overflow (unsigned t) < (unsigned a)
ZF zero (t == 0)
SF negative (t < 0)
OF signed overflow (a < 0 == b < 0) && (t < 0 != a < 0)

Young W. Lim Conditions 2023-06-30 Fri 28 / 57

Condition Codes and c = a+b (2)

CF (unsigned t) < (unsigned a) mag(t) < mag(a) if C=1
ZF (t == 0) zero t
SF (t < 0) negative t
OF (a<0 = b<0) && (t<0 ! a<0) sign(a) = sign(b) ! sign(t)

Young W. Lim Conditions 2023-06-30 Fri 29 / 57

Setting condition codes without altering registers (1)

Compare and test
cmpb S2, S1 S1 - S2 Compare bytes
cmpw S2, S1 S1 - S2 Compare words
cmpl S2, S1 S1 - S2 Compare double words
testb S2, S1 S1 & S2 Test bytes
testw S2, S1 S1 & S2 Test words
testl S2, S1 S1 & S2 Test double words

Young W. Lim Conditions 2023-06-30 Fri 30 / 57

Setting condition codes without altering registers (2)

Compare and test
cmpb S2, S1 -S2 + S1 Compare bytes
cmpw S2, S1 -S2 + S1 Compare words
cmpl S2, S1 -S2 + S1 Compare double words
testb S2, S1 S2 & S1 Test bytes
testw S2, S1 S2 & S1 Test words
testl S2, S1 S2 & S1 Test double words

Young W. Lim Conditions 2023-06-30 Fri 31 / 57

CMP instruction (1)

cmpb op1, op2

cmpw op1, op2

cmpl op1, op2

NULL \leftarrow op2 - op1
subtracts the contents of the src operand op1
from the dest operand op2
discard the results, only the flag register is affected

Young W. Lim Conditions 2023-06-30 Fri 32 / 57

CMP instruction (2)

cmpb op1, op2

cmpw op1, op2

cmpl op1, op2

Condition Signed Compare Unsigned Compare
op1 < op2 ZF == 0 && SF == OF CF == 0 && ZF == 0
op1 < op2= SF == OF CF == 0
op1 = op2= ZF == 1 ZF == 1
op1 > op2= ZF == 1 or SF != OF CF == 1 or ZF ==1
op1 > op2 SF != OF CF ==1

Young W. Lim Conditions 2023-06-30 Fri 33 / 57

TEST instruction

testb src, dest

testw src, dest

testl src, dest

NULL ← dest & src
ands the contents of the src operand with the dest operand
discard the results, only the flag register is affected

Young W. Lim Conditions 2023-06-30 Fri 34 / 57

TOC: accessing the condition codes

Young W. Lim Conditions 2023-06-30 Fri 35 / 57

Set (1)

set(e, z) D (equal / zero) D ← ZF
set(ne, nz) D (not equal/ not zero) D ← ~ZF
set(s) D (negative) D ← SF
set(ns) D (non-negative) D ← ~SF
set(g, le) D (greater, signed >) D ← ~(SF^OF)&~ZF
set(ge, nl) D (greater or equal, signed >=) D ← ~(SF^OF)
set(l, nge) D (less, signed <) D ← SF^OF
set(le, ng) D (less or equal, signed <=) D ← (SF^OF) | ZF
set(a, nbe) D (above, usnigned >) D ← ~CF&~ZF
set(ae, nb) D (above or euqal, unsinged >=) D ← ~CF
set(b, nae) D (below, unsigned <) D ← CF
set(be, na) D (below or equal, unsigned <=) D ← CF&~ZF

Young W. Lim Conditions 2023-06-30 Fri 36 / 57

Set (2)

set(e, z) D (equal / zero) D ← ZF
set(s) D (negative) D ← SF
set(g, le) D (greater, signed >) D ← ~(SF^OF)&~ZF
set(l, ge) D (less, signed <) D ← SF^OF
set(a, nbe) D (above, usnigned >) D ← ~CF&~ZF
set(b, nae) D (below, unsigned <) D ← CF

set(ne, nz) D (not equal/ not zero) D ← ~ZF
set(ns) D (non-negative) D ← ~SF
set(ge, nl) D (greater or equal, signed >=) D ← ~(SF^OF)
set(le, ng) D (less or equal, signed <=) D ← (SF^OF) | ZF
set(ae, nb) D (above or euqal, unsinged >=) D ← ~CF
set(be, na) D (below or equal, unsigned <=) D ← CF&~ZF

Young W. Lim Conditions 2023-06-30 Fri 37 / 57

Flag registers (1) - Z, O, S, P

E, Z Equal, Zero ZF == 1
NE, NZ Not Equal, Not Zero ZF == 0
O Overflow OF == 1
NO No Overflow OF == 0
S Signed SF == 1
NS Not Signed SF == 0
P Parity PF == 1
NP No Parity PF == 0

https://riptutorial.com/x86/example/6976/flags-register

Young W. Lim Conditions 2023-06-30 Fri 38 / 57

Flag registers (2) - unsigned arithmetic

C, B Carry, Below, CF == 1
NAE Not Above or Equal
NC, NB No Carry, Not Below, CF == 0
AE Above or Equal
A, NBE Above, Not Below or Equal CF==0 and ZF==0
NA, BE Not Above, Below or Equal CF==1 or ZF==1

https://riptutorial.com/x86/example/6976/flags-register

Young W. Lim Conditions 2023-06-30 Fri 39 / 57

Flag registers (3) - signed arithmetic

GE, NL Greater or Equal, Not Less SF==OF
NGE, L Not Greater or Equal, Less SF!=OF
G, NLE Greater, Not Less or Equal ZF==0 and SF==OF
NG, LE Not Greater, Less or Equal ZF==1 or SF!=OF

https://riptutorial.com/x86/example/6976/flags-register

Young W. Lim Conditions 2023-06-30 Fri 40 / 57

Flag registers (4)

The condition codes are grouped into three blocks :

Z, O, S, P Zero
Overflow
Sign
Parity

unsigned arithmetic Above
Below

signed arithmetic Greater
Less

JB would be "Jump if Below" (unsigned)
JL would be "Jump if Less" (signed)

https://riptutorial.com/x86/example/6976/flags-register

Young W. Lim Conditions 2023-06-30 Fri 41 / 57

Flag registers (3)

In 16 bits, subtracting 1 from 0

from to
0 65,535 unsigned arithmetic
0 -1 signed arithmetic

0x0000 0xFFFF bit representation

It’s only by interpreting the condition codes that the meaning is clear.
1 is subtracted from 0x8000:

from to
32,768 32,767 unsigned arithmetic
-32,768 32,767 signed arithmetic
0x8000 0x7FFF bit representation

(0111 1111 1111 1111 + 1 = 1000 0000 0000 0000)
https://riptutorial.com/x86/example/6976/flags-register

Young W. Lim Conditions 2023-06-30 Fri 42 / 57

Set (3)

accessing the condition codes
to read the condition codes directly
to set an integer register
to perform a conditional branch

based on some combination of condition codes

Young W. Lim Conditions 2023-06-30 Fri 43 / 57

Set (4)

the set instructions set a single byte to 0 or 1
depending on some combination of the condition codes

the destination operand D is
either one of the eight single byte register elements
or a memory location where the single byte is to be stored

to generate a 32-bit result,
the high-order 24-bits must be cleared

Young W. Lim Conditions 2023-06-30 Fri 44 / 57

Set (5)

a typical assembly for a c predicate
; a is in %edx
; b is in %eax

cmpl %eax, %edx ; compare a and b ; (a - b)
setl %al ; set low order byte of %eax to 0 or 1
movzbl %al, %eax ; set remaining bytes of %eax to 0

movzbl instruction is used to clear the high-order three bytes
| set(l, ge) | D | (less, signed <) | D ← SF^OF |

Young W. Lim Conditions 2023-06-30 Fri 45 / 57

movz instruciton (1)

Purpose: To convert an unsigned integer to a wider unsigned integer
opcode src.rx, dst.wy

dst <- zero extended src;

MOVZBW (Move Zero-extended Byte to Word) 8-bit zero BW

MOVZBL (Move Zero-extended Byte to Long) 24-bit zero BL

MOVZWL (Move Zero-extended Word to Long) 16-bit zero WL

Young W. Lim Conditions 2023-06-30 Fri 46 / 57

movz instruciton (2)

MOVZ BW (Move Zero-extended Byte to Word) 8-bit zero
the low 8 bits of the destination are replaced by the source operand
the top 8 bits are set to 0.

MOVZ BL (Move Zero-extended Byte to Long) 24-bit zero
the low 8 bits of the destination are replaced by the source operand.
the top 24 bits are set to 0.

MOVZ WL (Move Zero-extended Word to Long) 16-bit zero
the low 16 bits of the destination are replaced by the source operand.
the top 16 bits are set to 0.

The source operand is unaffected.

Young W. Lim Conditions 2023-06-30 Fri 47 / 57

register operand types (1)

byte 3 byte 2 byte 1 byte 0
%ah %al
%ax_1 %ax_0

%eax_3 %eax_2 %eax_1 %eax_0
%ch %cl
%cx_1 %cx_0

%ecx_3 %ecx_2 %ecx_1 %ecx_0
%dh %dl
%dx_1 %dx_0

%edx_3 %edx_2 %edx_1 %edx_0
%bh %bl
%bx_1 %bx_0

%ebx_3 %ebx_2 %ebx_1 %ebx_0

Young W. Lim Conditions 2023-06-30 Fri 48 / 57

register operand types (2)

byte 3 byte 2 byte 1 byte 0
%si_1 %si_0

%esi_3 %esi_2 %esi_1 %esi_0
%di_1 %di_0

%edi_3 %edi_2 %edi_1 %edi_0
%sp_1 %sp_0

%esp_3 %esp_2 %esp_1 %esp_0
%bp_1 %bp_0

%ebp_3 %ebp_2 %ebp_1 %ebp_0

Young W. Lim Conditions 2023-06-30 Fri 49 / 57

register operand types (3)

byte 3 byte 2 byte 1 byte 0
%ah %al
%ch %cl
%dh %dl
%bh %bl
%ax_1 %ax_0
%cx_1 %cx_0
%dx_1 %dx_0
%bx_1 %bx_0
%si_1 %si_0
%di_1 %di_0
%sp_1 %sp_0
%bp_1 %bp_0

Young W. Lim Conditions 2023-06-30 Fri 50 / 57

register operand types (4)

byte 3 byte 2 byte 1 byte 0
%eax_3 %eax_2 %eax_1 %eax_0
%ecx_3 %ecx_2 %ecx_1 %ecx_0
%edx_3 %edx_2 %edx_1 %edx_0
%ebx_3 %ebx_2 %ebx_1 %ebx_0
%esi_3 %esi_2 %esi_1 %esi_0
%edi_3 %edi_2 %edi_1 %edi_0
%esp_3 %esp_2 %esp_1 %esp_0
%ebp_3 %ebp_2 %ebp_1 %ebp_0

Young W. Lim Conditions 2023-06-30 Fri 51 / 57

Set (6)

for some of the underlying machine instructions,
there are multiple possible names (synonyms),

setg (set greater)
setnle (set not less or equal)

compilers and disassemblers make arbitrary choices
of which names to use

Young W. Lim Conditions 2023-06-30 Fri 52 / 57

Set (7)

although all arithmetic operations set the condition codes,
the descriptions of the different set commands apply
to the case where a comparison instruction has been executed,
setting the condition codes according to the computation
t = a - b

for example, consider the sete, or "Set when equal" instruction
when a = b, we will have t = 0, and hence the zero flag
indicates equality

Young W. Lim Conditions 2023-06-30 Fri 53 / 57

Set (8)

Similarly, consider testing a signed comparison with the setl
or "Set when less"
when a and b are in two’s complement form,
then for a < b we will have a - b < 0
if the true difference were computed
when there is no overflow, this would be indicated by having
the sign flag set

Young W. Lim Conditions 2023-06-30 Fri 54 / 57

Set (9)

when there is positive overflow,
because a - b is a large positive number, however,
we will have t < 0

when there is negative overflow,
because a - b is a small negative number,
we will have t > 0

in either case, the sign flag will indicate the opposite
of the sign of the true difference

Young W. Lim Conditions 2023-06-30 Fri 55 / 57

Set (10)

in either case, the sign flag will indicate the opposite
of the sign of the true difference

hence, the Exclusive-Or of the overflow and sign bits
provides a test for whether a < b

the other signed comparison tests are based
on other combinations of SF ^ OF and ZF

Young W. Lim Conditions 2023-06-30 Fri 56 / 57

Set (11)

for the testing of unsigned comparisons, the carry flag
will be set by the cmpl instruction
when the integer difference a - b of the unsigned arguments
a and b would be negative, that is when
(unsinged) a < (unsigned) b

thus, these tests use combinations of the carry and zero flags

Young W. Lim Conditions 2023-06-30 Fri 57 / 57

	Based on
	Condition Codes
	Condition Codes

	Accessing the Conditon Codes

