First Order Logic - Semantics (3A)

Copyright (c) 2016-2017 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License". version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice

Based on

Contemporary Artificial Intelligence, R.E. Neapolitan \& X. Jiang
Logic and Its Applications, Burkey \& Foxley

Examples of Terms

no expression involving a predicate symbol is a term.

```
x y f(x) g(x,y)
father (x) A function returns neither True nor False
    The father of }
Father (x) A predicate returns always True or False
Is x a father?
\forallx love(x,y) : free variable y
\forallx tall(x) : no free variable
    Bound variable x
    Free variable y
```

 https://en.wikipedia.org/wiki/First-order_logic\#Formation_rules

Terms

Terms

1. Variables. Any variable is a term.
2. Functions. Any expression $f\left(t_{1}, \ldots, t_{n}\right)$ of n arguments is a term where each argument t is a term and f is a function symbol of valence n In particular, symbols denoting individual constants are 0 -ary function symbols, and are thus terms.

Only expressions which can be obtained
by finitely many applications of rules 1 and 2 are terms.
no expression involving a predicate symbol is a term.

Formulas

Formulas (wffs)

Predicate symbols.

Equality.

Negation.
Binary connectives.
Quantifiers.

$$
\begin{aligned}
& P(x) \quad Q(x, y) \\
& x=f(y) \\
& \neg Q(x, y) \\
& P(x) \wedge \neg Q(x, y) \\
& \forall x, y(P(x) \wedge \neg Q(x, y))
\end{aligned}
$$

Only expressions which can be obtained by finitely many applications of rules 1-5 are formulas.

The formulas obtained from the first two rules are said to be atomic formulas.

Formulas

Formulas (wffs)

Predicate symbols. If P is an n-ary predicate symbol and t_{1}, \ldots, t_{n} are terms then $P\left(t_{1}, \ldots, t_{n}\right)$ is a formula.
Equality. If the equality symbol is considered part of logic, and t_{1} and t_{2} are terms, then $t_{1}=t_{2}$ is a formula.

Negation. If φ is a formula, then $\neg \varphi$ is a formula.
Binary connectives. If φ and ψ are formulas, then $(\varphi \rightarrow \psi)$ is a formula. Similar rules apply to other binary logical connectives.
Quantifiers. If φ is a formula and x is a variable, then $\forall \mathrm{x} \varphi$ (for all x , holds) and $\exists \mathrm{x} \varphi$ (there exists x such that φ) are formulas.

$$
\begin{aligned}
& P(x) \quad Q(x, y) \\
& x=f(y) \\
& \neg Q(x, y) \\
& P(x) \wedge \neg Q(x, y) \\
& \forall x, y(P(x) \wedge \neg Q(x, y))
\end{aligned}
$$

Atoms and Compound Formulas

a formula that contains no logical connectives
a formula that has no strict subformulas

Atoms:

the simplest well-formed formulas of the logic. $\quad P(x) \quad Q(x, y)$

Compound formulas :

formed by combining the atomic formulas using the logical connectives.

$$
\begin{aligned}
P(x) & \wedge \neg Q(x, y) \\
\forall x, y \quad(P(x) & \wedge \neg Q(x, y))
\end{aligned}
$$

Atomic Formula

for propositional logic
the atomic formulas are the propositional variables
for predicate logic
the atoms are predicate symbols together with their arguments, each argument being a term.

$$
P(x) \quad Q(x, f(y))
$$

In model theory
atomic formula are merely strings of symbols with a given signature which may or may not be satisfiable with respect to a given model

A Signature

First specify a signature

Constant Symbols

$$
\left\{\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots \mathrm{c}_{\mathrm{n}}\right\}=\mathrm{D}
$$

Predicate Symbols
$\left\{\mathbf{P}_{1}, \mathbf{P}_{2}, \ldots \mathbf{P}_{\mathrm{m}}\right\}$
Function Symbols
$\left\{\mathbf{f}_{1}, \mathbf{f}_{2}, \ldots \mathbf{f}_{\boldsymbol{\prime}}\right\}$

A Language

Determines the language

Given a language
A mode is specified
A domain of discourse
a set of entities

$$
\left\{\text { entity }_{1}, \text { entity }_{2}, \ldots \text { entity }_{n}\right\}
$$

An interpretation
constant assignments
$\left\{\mathrm{c}_{1}, \mathrm{C}_{2}, \ldots \mathrm{c}_{\mathrm{n}}\right\}=\mathrm{D}$
function assignments
truth value assignments
$\mathbf{f}_{1}(), \mathbf{f}_{2}(), \ldots \mathbf{f}_{1}()$
$\mathbf{P}_{1}(), \mathbf{P}_{2}(), \ldots \mathbf{P}_{\mathbf{m}}()$

Interpretation

$\left\{\right.$ entity $_{1}$, entity $_{2}, \ldots$ entity $\left._{n}\right\}$
Constant assignments

Function assignments

Truth value assignments

$$
\left\{\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots \mathrm{c}_{n}\right\}=\mathrm{D}
$$

always return T / F

Interpretation

Propositional Logic

	A	B	
Interpretation \mathbf{I}_{1}	T	T	
Interpretation \mathbf{I}_{2}	T	F	
Interpretation I_{3}	F	T	
Interpretation I_{4}	F	F	

First Order Logic

	P1() ... P2() ...		S1	S2
Interpretation I_{1}	T	T		
Interpretation I_{2}	T	F		
Interpretation I_{3}	F	T		
Interpretation I_{4}	F	F		

Sentences
$\left\{\right.$ entity $_{1}$, entity $_{2}, \ldots$ entity $\left._{n}\right\}$

$$
\left\{\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots \mathrm{c}_{n}\right\}=\mathrm{D}
$$

$$
\mathbf{f 1}(), \mathbf{f} 2(,), \ldots
$$

always return T / F

A Model

A model or a possible world:
Every atomic proposition is assigned a value T or F
The set of all these assignments constitutes

A model or a possible world

All possible worlds (assignments) are permissible
models

A	B	$\mathrm{A} \wedge \mathrm{B}$	$\mathrm{A} \wedge \mathrm{B} \Rightarrow \mathrm{A}$
T	T	T	T
T	F	F	T
F	T	F	T
F	F	F	T

Every atomic proposition : A, B

Models

$$
\left\{\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots \mathrm{~d}_{\mathrm{m}}\right\}=\mathrm{D} 2
$$

$$
\mathbf{P} 1\left({ }^{\nabla}\right), \mathbf{P} 2(,), \ldots
$$

Models

$$
\left\{c_{1}, c_{2}, \ldots c_{n}\right\}=D 1
$$

$$
\left\{\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots \mathrm{~d}_{\mathrm{m}}\right\}=\mathrm{D} 2
$$

D2

Truth values of sentences

Propositional Logic

	A	B	
Interpretation \mathbf{I}_{1}	T	T	
Interpretation I_{2}	T	F	
Interpretation I_{3}	F	T	
Interpretation \mathbf{I}_{4}	F	F	

First Order Logic

	P1()	P2()	S1 S2
Interpretation I_{1}	T	T	
Interpretation I_{2}	T	F	
Interpretation I_{3}	F	T	
Interpretation I_{4}	F	F	

terms
atomic
formulas
formulas /
sentences

$$
x \quad y \quad f(x) \quad g(x, y)
$$

$$
P(x) \quad Q(x, y)
$$

$$
\forall x, y \quad(P(x) \wedge \neg Q(x, y))
$$

Model Theory

A first-order theory of a particular signature is a set of axioms,
which are sentences consisting of symbols from that signature.

The set of axioms is
often finite or
recursively enumerable,
in which case the theory is called effective.
Sometimes theories often include all logical consequences of the axioms.
https://en.wikipedia.org/wiki/First-order_logic\#First-
order_theories.2C_models.2C_and_elēmentary_classes

Axioms of a model theory

Models

Propositional Logic

First Order Logic

Signature

	P1(P2()	S1	S2 ...	
Interpretation \mathbf{I}_{1} Interpretation \mathbf{I}_{2} Interpretation I_{3} Interpretation \mathbf{I}_{4}	T	T			
	T	F			
	F	T	T	T	a model
	F	F			
			T	T	a model
			T	T	a model

Logical Axioms

formulas in a formal language that are universally valid
formulas that are satisfied by every assignment of values (interpretations)
usually one takes as logical axioms
at least some minimal set of tautologies
that is sufficient for proving all tautologies in the language
in the case of predicate logic more logical axioms than that are required, in order to prove logical truths that are not tautologies in the strict sense.

valid formulas

Non-logical Axioms

formulas that play the role of theory-specific assumptions
reasoning about two different structures,
for example the natural numbers and the integers, may involve the same logical axioms;
the purpose is to find out
what is special about a particular structure
(or set of structures, such as groups).
Thus non-logical axioms are not tautologies.

Mathematical Discourse

Also called

- postulate
- axioms in mathematical discourse
this does not mean that it is claimed that they are true in some absolute sense
an elementary basis for a formal logic system

A deductive system

- axioms (non-logical)
- rules of inference

Need not be tautologies

general group
commutative group
commutative axiom

```
Non-commutative
    group
    non-commutative axiom
```

this does not mean that it is claimed
that they are true in some absolute sense

- Commutative axiom
- Non-commutative axiom

Model Theory

The axioms are considered
to hold within the theory and
From axioms other sentences that hold within the theory can be derived.
A first-order structure that satisfies all sentences in a given theory is said to be a model of the theory.

An elementary class is the set of all structures satisfying a particular theory.
These classes are a main subject of study in model theory.
https://en.wikipedia.org/wiki/First-order_logic\#First-
order_theories.2C_models.2C_and_elēmentary_classes

Truth values of sentences

Entailment in propositional logic can be computed
By enumerating the possible worlds (i.e. model checking)
How to enumerate possible worlds in FOL?
For each number of domain number n from 1 to infinity For each k-ary predicate Pk in the vocabulary For each possible k-ary relation on n objects
For each constant symbol C in the vocabulary
For each choice of referent for C from n objects. ..
Computing entailment in this way is not easy.
https://www.cs.umd.edu/~nau/cmsc421/chapter08.pdf

Model - domain of discourse

1. a nonempty set D of entities called a domain of discourse

- this domain is a set
- each element in the set : entity
- each constant symbol : one entity in the domain

```
If we considering all individuals in a class,
The constant symbols might be
    'Mary', - an entity
    'Fred', - an entity
    'John', - an entity
    `Tom' - an entity
```


Model - interpretation

2. an interpretation
(a) an entity in D is assigned to each of the constant symbols.

Normally, every entity is assigned to a constant symbol.
(b) for each function,
an entity is assigned to each possible input of entities to the function
(c) the predicate 'True' is always assigned the value T

The predicate 'False' is always assigned the value F
(d) for every other predicate,
the value T or F is assigned
to each possible input of entities to the predicate

Each possible input of entities

Arity one: $\quad C(n, 1)$
Arity two: $\quad \mathrm{C}(\mathrm{n}, 2)$
Arity three: $\quad C(n, 3)$

$$
\left\{\text { entity }_{1}, \text { entity }_{2}, \ldots \text { entity }_{n}\right\}
$$

$$
\left\{\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots \mathrm{c}_{n}\right\}=\mathrm{D}
$$

Arity one functions \& predicates:

$$
\begin{aligned}
& C(n, 1) \\
& C(n, 2) \\
& C(n, 3)
\end{aligned}
$$

Interpretation

Constant assignments
(a) an entity \rightarrow the constant symbols.

Function assignments
(b) an entity \rightarrow each possible input of entities to the function

Truth value assignments
(c) the value $\mathrm{T} \rightarrow$ the predicate 'True'
the value $F \rightarrow$ the predicate 'False'
(d) for every other predicate,
the value T or F is assigned \rightarrow every other predicate to each possible input of entities to the predicate

Signature Model Examples A - (1)

Signature

1. constant symbols $=\{$ Mary, Fred, Sam \}
2. predicate symbols $=\{$ married, young $\}$
married(x, y) : arity two
young(x) : arity one

Model

1. domain of discourse D : the set of three particular individuals

- this domain is a set
- each element in the set : entity (= individuals)
- each constant symbol : one entity in the domain (= one individual)

2. interpretation
(a) a different individual is assigned to each of the constant symbols
(a) an entity in D is assigned to each of the constant symbols. Normally, every entity is assigned to a constant symbol.

Signature Model Examples A - (2)

(b) for each function,
an entity is assigned to each possible input of entities to the function
(c) the predicate 'True' is always assigned the value T

The predicate 'False' is always assigned the value F
(d) the truth value assignments for every predicate

```
young(Mary) = F, young(Fred) = F, young(Sam) = T
(d) for every other predicate,
    the value T or F is assigned
    to each possible input of entities to the predicate
    (Mary, Mary), (Mary, Fred), (Mary, Sam)
    (Fred, Mary), (Fred, Fred), (Fred, Sam)
    (Sam, Mary), (Sam, Fred), (Sam, Sam)
```

married(Mary, Mary) = F, married(Mary, Fred) = T, married(Mary, Sam) = F
$\operatorname{married}($ Fred, Mary $)=$ T, married(Fred, Fred) $=$ F, married(Fred, Sam) $=$ F
$\operatorname{married}($ Sam, Mary $)=F, \operatorname{married}(S a m$, Fred $)=F, \operatorname{married}(S a m$, Sam $)=F$

Signature Model Examples B - (1)

Signature

1. constant symbols $=\{$ Fred, Mary, Sam \}
2. predicate symbols $=\{$ love $\} \quad$ love (x, y) : arity two
3. function symbols $=\{$ mother $\} \quad$ mother (x) : arity one

Model

1. domain of discourse D : the set of three particular individuals
2. interpretation
(a) a different individual is assigned to each of the constant symbols
(b) the truth value assignments for every predicate
love(Fred, Fred) $=$ F, love(Fred, Mary $)=$ F, love(Fred, Ann) $=$ F
love(Mary, Fred) = T, love(Mary, Mary) = F, love(Mary, Ann) = T love(Ann, Fred) $=\mathrm{T}$, love(Ann, Mary) $=\mathrm{T}$, love(Ann, Ann) $=\mathrm{F}$
(c) the function assignments
mother $($ Fred $)=$ Mary, mother $($ Mary $)=$ Ann, mother $($ Ann $)=-($ no assignment $)$

Signature Model Examples B - (2)

2. interpretation
(a) a different individual is assigned to each of the constant symbols
(a) an entity in D is assigned to each of the constant symbols. Normally, every entity is assigned to a constant symbol.
(b) the truth value assignments
(b) for each function,
an entity is assigned to each possible input of entities to the function
love $($ Fred, Fred $)=$ F, love(Fred, Mary $)=$ F, love $($ Fred, Ann $)=F$
love(Mary, Fred) = T, love(Mary, Mary) = F, love(Mary, Ann) = T
love(Ann, Fred) $=\mathrm{T}$, love(Ann, Mary) $=\mathrm{T}$, love(Ann, Ann) $=\mathrm{F}$
(c) the function assignments
(d) for every other predicate,
the value T or F is assigned
to each possible input of entities to the predicate
mother $($ Fred $)=$ Mary, mother(Mary $)=$ Ann, mother $($ Ann $)=-($ no assignment $)$

The truth value of sentences

The truth values of all sentences are assigned :

1. the truth values for sentences developed with the symbols $\neg, \Lambda, \vee, \Rightarrow, \Leftrightarrow$ are assigned as in propositional logic.
2. the truth values for two terms connected by the = symbol is \mathbf{T} if both terms refer to the same entity; otherwise it is \mathbf{F}
3. the truth values for $\forall x p(x)$ has value \mathbf{T} if $p(x)$ has value \mathbf{T} for every assignment to x of an entity in the domain D; otherwise it has value F
4. the truth values for $\exists x p(x)$ has value \mathbf{T} if $p(x)$ has value \mathbf{T} for at least one assignment to x of an entity in the domain D; otherwise it has value \mathbf{F}
5. the operator precedence is as follows $\neg,=, \wedge, \vee, \Rightarrow, \Leftrightarrow$
6. the quantifiers have precedence over the operators
7. parentheses change the order of the precedence

Formulas and Sentences

An formula

- A atomic formula
- The operator \neg followed by a formula
- Two formulas separated by $\wedge, \vee, \Rightarrow, \Leftrightarrow$
- A quantifier following by a variable followed by a formula

A sentence

- A formula with no free variables

$\forall x \operatorname{love}(x, y)$	$:$ free variable y	: not a sentence
$\forall x \operatorname{tall}(x)$: no free variable	: a sentence

Finding the truth value

Find the truth values of all sentences

1. $\neg, \wedge, \vee, \Rightarrow, \Leftrightarrow$
2. = symbol
3. $\forall x p(x)$
4. $\exists x p(x)$
5. the operator precedence is as follows $\neg,=, \wedge, \vee, \Rightarrow, \Leftrightarrow$

6 . the quantifiers (\forall, \exists) have precedence over the operators
7. parentheses change the order of the precedence

Sentence Examples (1)

Signature

Constant Symbols = \{Socrates, Plato, Zeus, Fido $\}$
Predicate Symbols = \{human, mortal, legs $\}$ all arity one

Model

D: the set of these four particular individuals

Interpretation

(a) a different individual is assigned to each of the constant symbols
(b) the truth value assignment
human(Socrates) $=\mathrm{T}$, human(Plato) $=\mathrm{T}$, human(Zeus) $=\mathrm{F}$, human(Fido) $=\mathrm{F}$
mortal(Socrates) $=$ T, mortal(Plato) $=\mathrm{T}$, mortal(Zeus) $=$ F, mortal(Fido) $=\mathrm{T}$
legs(Socrates)=T, legs(Plato)=T, legs(Zeus)=T, legs(Fido)=T

Sentence Examples (2)

Sentence 1: human(Zeus) \wedge human(Fido) vhuman(Socrates) $=T$
Sentence 2: human(Zeus) \wedge (human(Fido) v human(Socrates)) $=F$
Sentence 3: $\forall x$ human $(x)=F$
human(Zeus) $=F$, human(Fido) $=F$
Sentence 4: $\forall x$ mortal $(x)=F$
mortal(Zeus)=F
Sentence 5: $\forall x \operatorname{legs}(x)=T$
legs(Socrates) $=\mathrm{T}$, legs(Plato) $=\mathrm{T}$, legs(Zeus) $=\mathrm{T}$, legs(Fido)=T
Sentence 6: $\exists x$ human $(x)=T$
human(Socrates) $=T$, human(Plato) $=T$

Sentence 7: $\forall x$ (human $(x) \Rightarrow \operatorname{mortal}(x))=T$

Sentence Examples (3)

Sentence 7: $\forall x(\operatorname{human}(x) \Rightarrow \operatorname{mortal}(x))=T$
human(Socrates) $=\mathrm{T}$, mortal(Socrates) $=\mathrm{T}$,
human(Plato) $=\mathrm{T}, \quad$ mortal(Plato) $=\mathrm{T}$,
human(Zeus)=F, mortal(Zeus)=F,
human(Fido)=F
mortal(Fido) $=\mathbf{T}$
$\mathrm{T} \Rightarrow \mathrm{T}: \mathrm{T}$
$\mathrm{T} \Rightarrow \mathrm{T}: \mathrm{T}$
$F \Rightarrow F: T$
$\mathrm{F} \Rightarrow \mathrm{T}: \mathrm{T}$

References

[1] en.wikipedia.org
[2] en.wiktionary.org
[3] U. Endriss, "Lecture Notes : Introduction to Prolog Programming"
[4] http://www.learnprolognow.org/ Learn Prolog Now!
[5] http://www.csupomona.edu/~jrfisher/www/prolog_tutorial
[6] www.cse.unsw.edu.au/~billw/cs9414/notes/prolog/intro.html
[7] www.cse.unsw.edu.au/~billw/dictionaries/prolog/negation.html
[8] http://ilppp.cs.lth.se/, P. Nugues,` An Intro to Lang Processing with Perl and Prolog

