Sec. 10

Normal and shear stresses on an inclined plane
Equilibrium of forces on a triangle

Axial deformation

Torsional deformation
"Intelligence consists of this; that we recognize the similarity between different things, and the difference between similar things."

Baron de la Brède et de Montesquieu (1689-1755) quoted in [Quantum field theory, E. Zeidler, 2008, p.175]

Pb-10.1:

Find the normal and shear stresses (σ, τ) on the inclined facet in these triangles, with thickness t, angle θ, vertical edge $d y$, and given normal stress $\sigma_{\max }$ and shear stress $\tau_{\max }$. Are the stresses depending on t and $d y$?

For each of the above two triangles, deduce the normal and shear stresses for the following angles:

$$
\begin{aligned}
& \theta=30^{\circ} \\
& \theta=45^{\circ}
\end{aligned}
$$

