Monad P3 : Existential Types (1D)

Copyright (c) 2016-2021 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice.

Based on

```
Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps
```


Existential Quantification

Existentials

Existential types, or
Existentials for short,
provide a way of
squashing a group of types
into one, single type.
https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Existentials

Existentials are part of GHC's type system extensions.

But not part of Haskell98
have to either compile with a command-line parameter of -XExistentialQuantification,
or put at the top of your sources that use existentials.
\{-\# LANGUAGE ExistentialQuantification \#-\}

forall type variables

Example: A polymorphic function
map :: (a -> b) -> [a] -> [b]

Example: Explicitly quantifying the type variables
map :: forall a b. (a -> b) -> [a] -> [b]
instantiating the general type of map to a more specific type
$\mathbf{a}=$ Int and $\mathbf{b}=$ String
(Int -> String) -> [Int] -> [String]

Example: Two equivalent type statements
id :: a -> a
id :: forall a. a -> a
https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Hiding a type variable (1)

Normally when creating a new type using type, newtype, data, etc., every type variable that appears on the right-hand side must also appear on the left-hand side.
newtype ST s a = ST (State\# s -> (\# State\# s, a \#))

Existential types are a way of escaping

Existential types can be used for several different purposes.
But what they do is to hide a type variable on the right-hand side.

Hiding a type variable (2)

Normally, any type variable appearing on the right must also appear on the left:
data Worker x y = Worker \{buffer :: b, input :: x, output :: y\}
This is an error, since the type b of the buffer
is not specified on the right
(b is a type variable rather than a type)
but also is not specified on the left
(there's no b in the left part).

In Haskell98, you would have to write
data Worker $b x y=$ Worker $\{b u f f e r:: ~ b$, input $:: x$, output :: y\}
https://wiki.haskell.org/Existential_type

Hiding a type variable (3)

However, suppose that a Worker can use any type b
so long as it belongs to some particular class.
Then every function that uses a Worker will have a type like
foo :: (Buffer b) => Worker b Int Int

In particular, failing to write an explicit type signature (Buffer b)
will invoke the dreaded monomorphism restriction.

Using existential types, we can avoid this:

Hiding a type variable (4)

Using existential type :
data Worker $\mathrm{x} \mathrm{y}=$ forall b . Buffer $\mathrm{b}=>$ Worker \{buffer :: b, input :: x , output :: y\} foo :: Worker Int Int

The type of the buffer (Buffer) now does not appear in the Worker type at all. Worker $\mathrm{x} y$

Explicit type signature :
data Worker $\mathrm{b} \mathrm{x} \mathrm{y}=$ Worker \{buffer :: b, input :: x , output :: y\}
foo :: (Buffer b) => Worker b Int Int

Hiding a type variable (5)

- it is now impossible for a function
to demand a Worker having a specific type of buffer.
- the type of foo can now be derived automatically without needing an explicit type signature.
(No monomorphism restriction.)
- since code now has no idea
what type the buffer function returns,
you are more limited in what you can do to it.
data Worker $\mathrm{x} \mathrm{y}=$ forall b . Buffer $\mathrm{b}=>$ Worker $\{$ buffer :: b, input :: x , output :: y\} foo :: Worker Int Int
https://wiki.haskell.org/Existential_type

Hiding a type variable (6)

In general, when you use a hidden type in this way, you will usually want that type to belong to a specific class, or you will want to pass some functions along that can work on that type.

Otherwise you'll have some value belonging to a random unknown type,
and you won't be able to do anything to it!

Less specific types (1)

Note: You can use existential types to convert a more specific type into a less specific one.
constrained type variables

There is no way to perform the reverse conversion!

Less specific types (2)

This illustrates creating a heterogeneous list, all of whose members implement "Show", and progressing through that list to show these items:
data Obj = forall a. (Show a) => Obj a

```
xs :: [Obj]
xs = [Obj 1, Obj "foo", Obj 'c']
doShow :: [Obj] -> String
doShow [] = ""
doShow ((Obj x):xs) = show x ++ doShow xs
```

With output: doShow xs ==> "1|"fool"'c'"

Existentials in terms of forall (1)

It is also possible to express existentials with RankNTypes
as type expressions directly (without a data declaration)
forall r. (forall a. Show a => a -> r) -> r
(the leading forall r . is optional
unless the expression is part of another expression).
the equivalent type Obj :
data Obj = forall a. (Show a) => Obj a

Existentials in terms of forall (2)

The conversions are:
fromObj :: Obj -> forall r. (forall a. Show a => a -> r) -> r
fromObj (Obj x$) \mathrm{k}=\mathrm{kx}$
toObj :: (forall r. (forall a. Show a => a -> r) -> r) -> Obj
toObj f = f Obj
https://wiki.haskell.org/Existential_type

Heterogeneous Lists

Type hider

Suppose we have a group of values.
they may not be all the same type,
but they are all members of some class
thus, they have a certain property

It might be useful to throw all these values into a list.
normally this is impossible because lists elements
must be of the same type
(homogeneous with respect to types).
existential types allow us to loosen this requirement
by defining a type hider or type box:
data ShowBox = forall s. Show s => SB s
heteroList :: [ShowBox]
heteroList = [SB (), SB 5, SB True]

Heterogeneous list example (1)

```
data ShowBox = forall s. Show s => SB s -- type hider
heteroList :: [ShowBox]
heteroList = [SB (), SB 5, SB True]
```

[SB (), SB 5, SB True] calls the constructor
on three values of different types,
to place them all into a single list
virtually the same type for each one.

Use the forall in the constructor

```
SB :: forall s. Show s => s -> ShowBox.
```


Heterogeneous list example (2)

```
data ShowBox = forall s. Show s => SB s
heteroList :: [ShowBox]
heteroList = [SB (), SB 5, SB True]
```

When passing heteroList type parameters to a function
we cannot take out the values inside the SB
because their type might Bool. Int, Char, ...

But each of the elements can be
converted to a string via show.

In fact, that's the only thing we know about them.

Heterogeneous list example (3)

```
instance Show ShowBox where
show (SB s) = show s
f :: [ShowBox] -> IO ()
f xs = mapM_ print xs
main = f heteroList
```


Heterogeneous list example (4)

```
Example: Using our heterogeneous list
instance Show ShowBox where
show (SB s) = show s -- (*) see the comment in the text below
f :: [ShowBox] -> IO ()
f xs = mapM_ print xs
main = f heteroList
Example: Types of the functions involved
print :: Show s => s -> IO () -- print x = putStrLn (show x)
mapM_:: (a -> m b) -> [a] -> m ()
mapM_ print :: Show s => [s] -> IO ()
```


mapM, mapM_, and map (1)

The core idea is that mapM maps
an "action" (ie function of type $\mathbf{a}-\mathbf{m} \mathbf{b}$) over a list and gives you all the results as m [b]
mapM_ does the same thing,
but never collects the results, returning a $\mathrm{m}($).

If you care about the results
of your $\mathbf{a}->\mathbf{m} \mathbf{b}$ function, use mapM.
If you only care about the effect,
but not the resulting value,
use mapM_, because it can be more efficient

mapM, mapM_, and map (2)

Always use mapM_ with functions of the type $\mathbf{a}->\mathbf{m}()$,
like print or putStrLn.
these functions return () to signify that only the effect matters.

If you used mapM, you'd get a list of () (ie [(), (), ()]),
which would be completely useless
but waste some memory.

If you use mapM_, you would just get a (),
but it would still print everything.

mapM, mapM_, and map (3)

Normal map is something different:
it takes a normal function (a -> b)
instead of one using a monad (\mathbf{a}-> m b).

This means that it cannot have any sort of effect
besides returning the changed list.

You would use it if you want to transform a list
using a normal function.
map_ doesn't exist because, since you don't have any effects,
you always care about the results of using map.

Quantified types

as products and sums

Quantified Types as Products and Sums

A universally quantified type may be interpreted
as an infinite product of types.
a polymorphic function can be understood as a product, or a tuple, of individual functions, one per every possible type a.

To construct a value of such type, we have
to provide all the components of the tuple at once.
-- one formula generating an infinity of functions

Quantified Types as Products and Sums

Example: Identity function
id :: forall a. a -> a
id $\mathbf{a}=\mathbf{a}$
a polymorphic function can be understood
as a product, or a tuple, of individual functions, one per every possible type a.

Int -> Int, Double -> Double, ...
Char -> Char, [Char] -> [Char], ...
...
...
https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Quantified Types as Products and Sums

To construct a value of such type, we have to provide all the components of the tuple at once.
in case of numeric types, one numeric constant may be used to initialize many types at once.

Example: Polymorphic value
x : forall a. Num $\mathbf{a}=>\mathbf{a}$
$\mathrm{x}=0$
\mathbf{x} may be conceptualized as a tuple consisting
of an Int value, a Double value, etc.
https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Quantified Types as Products and Sums

Similarly, an existentially quantified type may be interpreted as an infinite sum.

Example: Existential type
data ShowBox = forall s. Show s => SB s
may be conceptualized as a sum:
https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Quantified Types as Products and Sums

```
Example: Existential type
data ShowBox = forall s. Show s => SB s
Example: Sum type
data ShowBox = SBUnit | SBInt Int | SBBool Bool | SBIntList [Int] | ...
to construct a value of this type,
we only have to pick one of the constructors.
A polymorphic constructor SB
combines all those constructors into one.
```


Quantification as a primitive

Newtype creates a function (1)

```
newtype Parser a = Parser { parse :: String -> Maybe (a,String) }
```

1) A type named Parser.
2) A term level constructor of Parser's named Parser. The type of this (constructor) function is

Parser :: (String -> Maybe (a, String)) -> Parser a

You give it a function of the type
(String -> Maybe (a, String))
and it wraps it inside a Parser
https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

Newtype creates a function (2)

newtype Parser a = Parser \{ parse :: String -> Maybe (a,String) \}
3) A function named parse to remove the Parser wrapper and get your function back. The type of this function is:
parse :: Parser a -> String -> Maybe (a, String)

A term level constructor named Parser
Parser :: (String -> Maybe (a, String)) -> Parser a

Newtype creates a function (3)

Prelude> newtype

```
Parser a = Parser { parse :: String -> Maybe (a,String) }
```

Prelude> :t Parser
Parser :: (String -> Maybe (a, String)) -> Parser a

Prelude> :t parse
parse :: Parser a -> String -> Maybe (a, String)

Newtype creates a function (4)

```
newtype Parser a = Parser { parse :: String -> Maybe (a,String) }
the term level constructor (Parser)
the function to remove the wrapper (parse)
Both can have arbitrary names
No need to match the type name.
It's common to write:
newtype Parser a = Parser { unParser :: String -> Maybe (a,String) }
```


Newtype creates a function (5)

```
newtype Parser a = Parser { unParser :: String -> Maybe (a,String) }
```

this name makes it clear unParser removes
the wrapper around the parsing function.
unParser :: Parser a -> String -> Maybe (a, String)
however, it is recommended that the type and constructor have the same name when using newtypes.
(Parser, Parser)

Newtype creates a function (6)

newtype Parser a = Parser \{ parser :: String -> Maybe (a,String) \}

1) Parser is declared as a type with a type parameter a
2) can instantiate Parser by providing a parser function
p = Parser (ls -> Nothing)
3) a function name parser defined and
it is capable of running Parser's.
unwrap the function
then apply the function

Newtype creates a function (7)

```
newtype Parser a = Parser { parser :: String -> Maybe (a,String) }
parser :: Parser a -> String -> Maybe (a, String)
parser (Parser (ls -> Nothing)) "my input"
(Is -> Nothing)) "my input"
Nothing
You are unwrapping the function using parse and then calling the unwrapped function with "myInput".
```


Newtype creates a function (8)

```
First, let's have a look at a parser newtype without record syntax:
newtype Parser' a = Parser' (String -> Maybe (a,String))
it stores a function String -> Maybe (a,String).
```

To run this parser, we will need to make a new function:
runParser' :: Parser' a -> String -> Maybe (a,String)
runParser' $\left(\right.$ Parser' $^{\prime} \mathbf{f} \mathbf{i}=\mathbf{f} \mathbf{i}$

Newtype creates a function (9)

```
runParser' :: Parser' a -> String -> Maybe (a,String)
runParser'(Parser'f)i=fi
runParser' (Parser' $ Is -> Nothing) "my input".
But now note that, since Haskell functions are curried, we can simply remove the reference to the input \(\mathbf{i}\) to get:
runParser" :: Parser' -> (String -> Maybe (a,String))
runParser" (Parser' f') = f'
```


Newtype creates a function (10)

```
runParser" :: Parser' -> (String -> Maybe (a,String))
runParser" (Parser'f') = f'
```

This function is exactly equivalent to runParser', but you could think about it differently:
instead of applying the parser function to the value explicitly, it simply takes a parser and fetches the parser function from it; (Parser' \mathbf{f}^{\prime}) $\rightarrow \mathbf{f}$ ' however, thanks to currying, runParser" can still be used with two arguments.

Newtype creates a function (11)

```
newtype Parser a = Parser { parse :: String -> Maybe (a,String) }
newtype Parser' a = Parser' (String -> Maybe (a,String))
difference : record syntax with only one field
this record syntax automatically defines a function
parse :: Parser a -> (String -> Maybe (a,String)),
which extracts the String -> Maybe (a,String) function
from the Parser a.
```


Newtype creates a function (12)

```
newtype Parser a = Parser { parse :: String -> Maybe (a,String) }
parse can be used with two arguments thanks to currying,
and this simply has the effect of running the function stored
within the Parser a.
equivalent definition to the following code:
newtype Parser a = Parser (String -> Maybe (a,String))
parse :: Parser a -> (String -> Maybe (a,String))
parse (Parser p) = p
```


Access functions in a record type (1)

```
data Person \(=\) Person \(\{\) firstName ::String
    lastName :: String
    age :: Int ,
    height :: Float ,
    phoneNo :: String
    flavor :: String
    \} deriving (Show)
ghci> :t flavor
flavor :: Person -> String
ghci> :t firstName
firstName :: Person -> String
```

return types of
access functions

Person ::

the input type of
access functions

Access functions in a record type (2)

```
data Car = Car String String Int deriving (Show)
ghci> Car "Ford" "Mustang" 1967
Car "Ford" "Mustang" 1967
data Car = Car {company :: String,
    model :: String,
    year :: Int} deriving (Show)
ghci> Car {company="Ford", model="Mustang", year=1967}
Car {company = "Ford", model = "Mustang", year = 1967}
```


Pair type example (1)

Universal quantification is useful
for defining data types that aren't already defined.
Suppose there was no such thing as pairs built into haskell.
Quantification could be used to define them.
\{-\# LANGUAGE ExistentialQuantification, RankNTypes \#-\}
newtype Pair a b = Pair (forall c. (a -> b -> c) -> c)
makePair :: a -> b -> Pair a b
makePair $\mathbf{a} \mathbf{b}=$ Pair $\$$ If -> fab

Pair \$ If -> fab :: Pair $\mathbf{a} \mathbf{b}$

```
f :: a -> b -> c
fab::c
fis not yet defined
c can be any type (forall c)
```

defining data type c
that aren't already defined

Pair type example (2)

newtype Pair a b = Pair (forall c. (a -> b -> c) -> c)
makePair :: $\mathbf{a}->\mathbf{b}$-> Pair $\mathbf{a} \mathbf{b}$
makePair $\mathbf{a} \mathbf{b}=$ Pair $\$$ If $->f \mathbf{a b}$
using a record type with a single field
$\lambda>$ newtype Pair $\mathbf{a b}=$ Pair $\{r u n P a i r::$ forall c. $(a->b->c)->c\}$
runPair is an access function
takes an input of the type Pair ab
returns an output of the type forall c. (a -> b -> c) -> c

Pair \$ lf -> fab:: Pair $\mathbf{a} \mathbf{b}$

Pair type example (3)

In GHCI

$\lambda>$:set -XExistentialQuantification
$\lambda>$:set -XrankNTypes
$\lambda>$ newtype Pair $\mathbf{a b}=$ Pair $\{r u n P a i r::$ forall c. (a -> b -> c) -> c $\}$
$\lambda>$ makePair $\mathbf{a} \mathbf{b}=$ Pair $\$$ lf $->\mathbf{f} \mathbf{a b}$
$\lambda>$ pair = makePair "a" 'b'
$\lambda>$:t pair
pair :: Pair [Char] Char
$\lambda>$ runPair pair (lxy -> x) $\quad--$ unwrap ($\mathrm{a}->\mathrm{b}->\mathrm{c}$) -> c then apply "a"
$\lambda>$ runPair pair (lxy -> y) -- unwrap (a -> b -> c) -> c then apply 'b'

Pair \$ If -> $\mathbf{f} \mathbf{a b}$:: Pair $\mathbf{a} \mathbf{b}$

makePair "a" 'b'
Pair \$ lf -> f "a" 'b' :: Pair a b

Pair type example (4)

$\lambda>$ newtype Pair $\mathbf{a b}=$ Pair $\{r u n P a i r::$ forall c. $(a->b->c)->c\}$
$\lambda>$ makePair $\mathbf{a} \mathbf{b}=$ Pair $\$$ lf $->\mathbf{f} \mathbf{a} \mathbf{b}$
$\lambda>$ pair = makePair "a" 'b'

Pair \$ lf -> f"a" 'b'
If: function itself $\quad \mathbf{f}:=\mathbf{a}->\mathbf{b}->\mathbf{c}$
f "a" 'b' : the result of applying the function

> Pair \$ If -> fab :: Pair ab

makePair "a" 'b'
Pair \$ lf -> f "a" 'b' :: Pair ab

Pair type example (5)

```
newtype Pair a b = Pair {runPair :: forall c. (a -> b -> c) -> c}
runPair :: Pair a b -> forall c. (a -> b -> c) -> c
makePair ab = Pair $ If -> fab
runPair makePair ab= lf -> fab
    -- unwrapping
makePair "a" 'b' = Pair $ lf -> f "a" 'b'
runPair makePair "a" 'b' = lf -> f "a" 'b'
pair = makePair
:: Pair [Char] Char
runPair pair (lx y -> x) = (lx y -> x) "a" 'b'
runPair pair (lx y -> y) = (lx y -> y) "a" 'b'
```


Pair \$ lf -> fab:: Pair ab

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Pair type example (6)

```
runPair pair (lx y -> x) = (lx y -> x) "a" 'b'
runPair pair (lx y -> y) = (lx y -> y) "a" 'b'
runPair makePair "a" 'b' (lx y -> x)
(lx y -> x) "a" 'b'
"a"
runPair makePair "a" 'b' (lx y -> y)
(lx y -> y) "a" 'b'
'b'
```


Pair type example (6)

Pair \$ lf -> $\mathbf{f} \mathbf{a b}$:: Pair $\mathbf{a} \mathbf{b}$

pair (lxy -> y)
makePair "a" 'b' (lx y -> y)

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

Existentials

Existential types, or 'existentials' for short, provide a way of 'squashing' a group of types into one, single type.

Existentials are part of GHC's type system extensions.
They aren't part of Haskell98, and as such you'll have
to either compile any code that contains them
with an extra command-line parameter of
-XExistentialQuantification,
or put at the top of your sources that use existentials.
\{-\# LANGUAGE ExistentialQuantification \#-\}

