First Order Logic – Implication (4A)

Young W. Lim 5/30/17 Copyright (c) 2016 - 2017 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice

Contemporary Artificial Intelligence, R.E. Neapolitan & X. Jiang

Logic and Its Applications, Burkey & Foxley

PL: A Model

A model or a possible world:

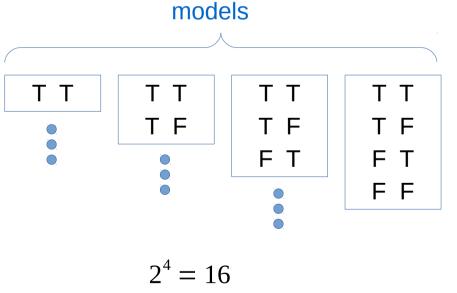
Every atomic proposition is assigned a value T or F

The set of **all** these assignments constitutes A **model** or a **possible world**

All possible worlds (assignments) are permissible

Α	В	A∧B	$A \Lambda B \Rightarrow A$
Т	Т	Т	Т
T	F	F	Т
F	T	F	Т
F	F	F	Т

Every atomic proposition : A, B



PL: Interpretation

Semantics : the meaning of formulas

Truth values are assigned to the atoms of a formula in order to evaluate the truth value of the formula

An interpretation for A is a total function I_A : $P_A \rightarrow \{T, F\}$ that assigns the truth values **T** or F to every atom in P_A

 $A \in F$ a formula P_A the set of atoms in A

https://en.wikipedia.org/wiki/Syntax_(logic)#Syntactic_consequence_within_a_formal_system

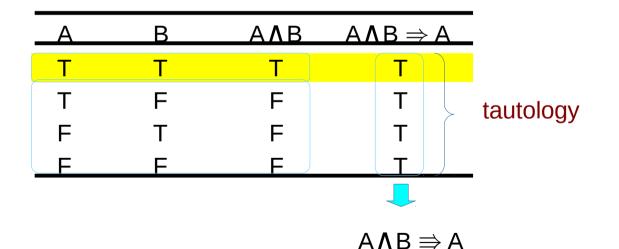
	А	В	
Interpretation $I_1 \implies$	Т	Т	
Interpretation $I_2 \implies$	Т	F	
Interpretation $I_3 \rightarrow$	F	Т	
Interpretation $I_4 \rightarrow$	F	F	

PL: Material Implication vs Logical implication

Given two propositions A and B, If $A \Rightarrow B$ is a tautology It is said that A logically implies B $(A \Rightarrow B)$

Material Implication $A \Rightarrow B$ (not a tautology)Logical Implication $A \Rightarrow B$ (a tautology)

А	В	A⇒B
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т



PL: Entailment

if $A \rightarrow B$ holds in every model then $A \models B$, and conversely if $A \models B$ then $A \rightarrow B$ is true in every model

any model that makes **A** \begin{array}{c} A \begin{array}{c} B true \\ \hline B tru

also makes A true $A \land B \models A$

No case : True \Rightarrow False

А	В	A⇒B
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

A	В	AΛB	$A\Lambda B \Rightarrow A$
Т	Т	Т	Т
Т	F	F	Т
F	Т	F	Т
F	F	F	Т

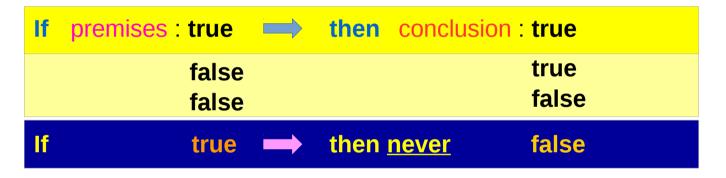
Entailment $A \land B \models A$, or $A \land B \Rightarrow A$

PL: Validity of Arguments (1)

An **argument form** is **valid** if and only if

whenever the premises are all true, then conclusion is true.

An argument is valid if its argument form is valid.



http://math.stackexchange.com/questions/281208/what-is-the-difference-between-a-sound-argument-and-a-valid-argument

A deductive argument is said to be valid if and only if

it takes a form that makes it *impossible* for the premises to be **true** and the conclusion nevertheless to be **false**.

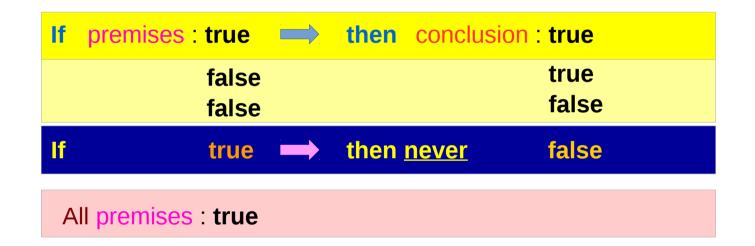
Otherwise, a deductive argument is said to be **invalid**. for the **premises** to be **true** and the **conclusion** is **false**.

http://www.iep.utm.edu/val-snd/

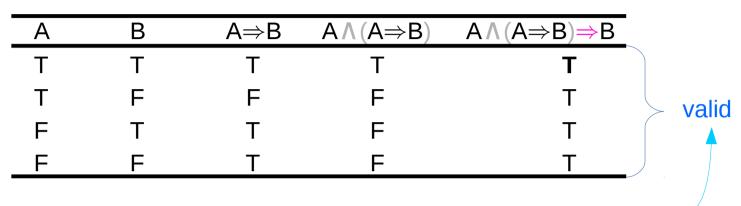
PL: Soundness of Arguments

An argument is sound if and only if

it is **valid** and **all** its **premises** are **true**.



http://math.stackexchange.com/questions/281208/what-is-the-difference-between-a-sound-argument-and-a-valid-argument



If premises : true then <u>never</u> conclusion : false

А	В	A⇒B	$A \land (A \Rightarrow B)$	$A \wedge (A$	⇒B)⇒B	
Т	Т	Т	т		Т	sound
Т	F	F	F		Т	
F	Т	Т	F		Т	
F	F	Т	F		Т	

Always premises : true therefore conclusion : true

http://www.iep.utm.edu/val-snd/

an interpretation

- (a) an <u>entity</u> in D is assigned to each of the <u>constant symbols</u>. Normally, every entity is assigned to a constant symbol.
- (b) for each function,

an entity is assigned to each possible input of entities to the function

- (c) the predicate '**True**' is always assigned the value T The predicate '**False**' is always assigned the value F
- (d) for every other **predicate**,

the value T or F is assigned to each possible input of entities to the **predicate**

Formulas and Sentences

An formula

free variables

- A atomic formula
- The operator ¬ followed by a **formula**
- Two formulas separated by Λ , \forall , \Rightarrow , \Leftrightarrow
- A quantifier following by a variable followed by a formula

A sentence

- A formula with no free variables.
- $\forall x \text{ tall}(x)$: no free variable : a sentence
- $\forall x \text{ love}(x, y)$: free variable y : not a sentence

If a sentence ϕ evaluates to **True** under a given interpretation M, one says that M satisfies ϕ ;

this is denoted $M \models \phi$

A sentence is **satisfiable** if there is some interpretation under which it is **True**. **Satisfiability** of formulas with free variables is more *complicated*, because an interpretation on its own does <u>not</u> determine the truth value of such a formula.

The most common convention is that a formula with free variables is said to be **satisfied** by an interpretation if the formula *remains* **true regardless** which individuals from the domain of discourse are <u>assigned</u> to its free variables.

This has the same effect as saying that a formula is **satisfied** if and only if its universal closure is **satisfied**.

https://en.wikipedia.org/wiki/First-order_logic

First Order	Logic ((4A)
Implication	-	

Validity of a formula

A formula is **logically valid** (or simply **valid**) if it is **valid** in <u>every</u> interpretation, or if it is **satisfied** by <u>every</u> interpretation

These formulas play a role *similar* to **tautologies** in <u>propositional</u> logic.

Valid formula examples

A formula is **valid** if it is **satisfied** by <u>every</u> interpretation

free variables

Every tautology is a valid formula

A valid sentence: human(John) V ¬human(John)

A valid sentence: $\exists x (human(x) \lor \neg human(x))$

A **valid** formula:

loves(John, y) V ¬loves(John, y)

True regardless of which individual in the domain of discourse is assigned to y This formula is true in every interpretation A sentence is a **contradiction** if there is <u>**no** interpretation</u> that satisfies it

 $\exists x (human(x) \land \neg human(x))$

not satisfiable under <u>any</u> interpretation

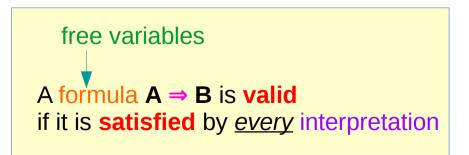
Logical implication of a formula

A formula B is a logical consequence of a formula A if every interpretation that makes A true also makes B true.

In this case one says that **B** is **logically implied** by **A**.

Given two formulas **A** and **B**, if $\mathbf{A} \Rightarrow \mathbf{B}$ is **valid**:

A logically implies B $A \Rightarrow B$



Logical implication examples

Given two formulas **A** and **B**, if $\mathbf{A} \Rightarrow \mathbf{B}$ is valid:

A logically implies B $A \Rightarrow B$

human(John) \land (human(John) \Rightarrow mortal(John)) \Rightarrow mortal(John)

Α

human(x) \land (human(x) \Rightarrow mortal(x)) \Rightarrow mortal(x)

valid if it is satisfied by <u>every</u> interpretation

Β

Logical equivalence examples

Given two formulas A and B, if $A \Leftrightarrow B$ is valid:

A is logically equivalent B $A \equiv B$

(human(John) \Rightarrow mortal(John)) = (\neg human(John) V mortal(John))

valid if it is satisfied by *every* interpretation

Some Logical Equivalences

A and B are **variables** representing *arbitrary predicates* A and B could have other arguments besides x

 $\neg \exists x A(x) \equiv \forall x \neg A(x)$ $\neg \forall x A(x) \equiv \exists x \neg A(x)$ $\exists x (A(x) \lor B(x)) \equiv \exists x A(x) \lor \exists x B(x)$

 $\forall x (A(x) \land B(x)) \equiv \forall x A(x) \land \forall x B(x)$

 $\forall x A(x) \equiv \forall y A(y)$ $\exists x A(x) \equiv \exists y A(y)$

Logical Validity and Tautology

Tautology

- defined in the context of *proposition*
- can be extended to sentences in the first order logic

In *propositional* logic the following two coincide In *first order logic*, they are distinguished

Logical Validities

Sentences that are true in every model (in every interpretation)

Tautologies A proper <u>subset</u> of the first-order logical validities

Logical Validity & Tautology

A unary relation symbols R, S, T

 $(((\exists x Rx) \land \neg(\exists x Rx)) \rightarrow (\forall x Tx)) \iff ((\exists x Rx) \rightarrow ((\neg \exists x Sx) \rightarrow (\forall x Tx)))$: **logical validity** in first order logic

(∃xRx) : A (¬∃xSx) : B (∀xTx) : C

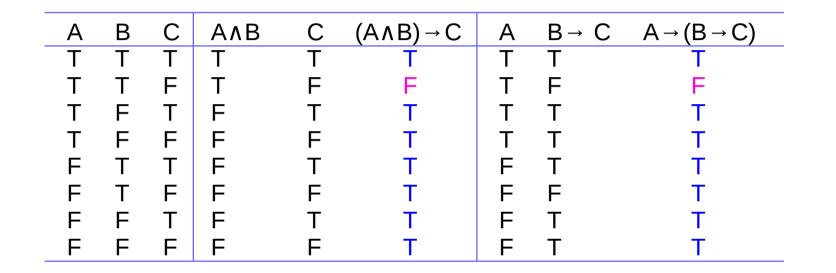
 $((A \land B) \rightarrow C) \Leftrightarrow (A \rightarrow (B \rightarrow C))$: a **tautology** in propositional logic **¬**, Λ,

V

Logical Validity & Tautology

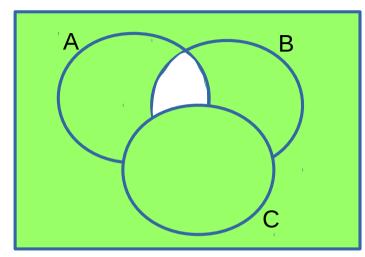
$$((A \land B) \rightarrow C) \Leftrightarrow (A \rightarrow (B \rightarrow C))$$

¬, Λ, V

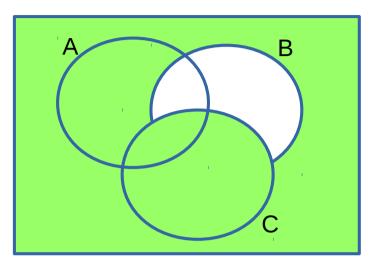


Logical Validity & Tautology

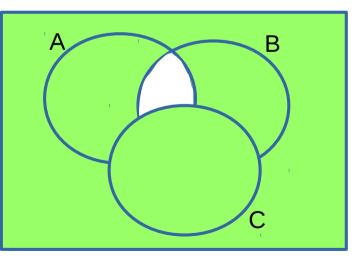
 $(A \wedge B) \rightarrow C$



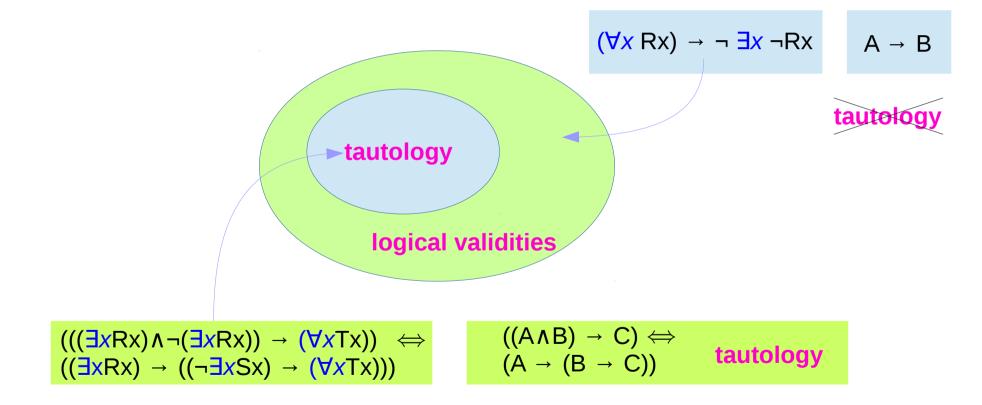
 $B \to C$



 $A \rightarrow (B \rightarrow C)$



 $(\forall x \ Rx) \rightarrow \neg \exists x \neg Rx$ logical validities in first order logic ∇ , Λ , ∇ A \rightarrow B the corresponding propositional sentence is **not** a **tautology** ∇



First Order Logic (4A) Implication

Tautology in first order logic

A tautology in first order logic

A sentence that can be obtained by taking a **tautology** of propositional logic and uniformly replacing each propositional variable by a first order formula (one formula per propositional variable)

A V ¬ A : a tautology of propositional logic $\forall x (x = x) V \neg \forall x (x = x)$ is a tautology in first order logic

References

- [1] en.wikipedia.org
- [2] en.wiktionary.org
- [3] U. Endriss, "Lecture Notes : Introduction to Prolog Programming"
- [4] http://www.learnprolognow.org/ Learn Prolog Now!
- [5] http://www.csupomona.edu/~jrfisher/www/prolog_tutorial
- [6] www.cse.unsw.edu.au/~billw/cs9414/notes/prolog/intro.html
- [7] www.cse.unsw.edu.au/~billw/dictionaries/prolog/negation.html
- [8] http://ilppp.cs.lth.se/, P. Nugues,`An Intro to Lang Processing with Perl and Prolog