Coordinate Systems

Copyright (c) 2011-2016 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Cartesian Coordinates

Cylindrical Coordinate

Spherical Coordinate

Cartesian Coordinate System

Spherical Coordinate System

https://en.wikipedia.org/wiki/Cylindrical_coordinate_system\#/media/File:Coord_system_CY_1.svg https://en.wikipedia.org/wiki/Cylindrical_coordinate_system\#/media/File:Cylindrical_coordinate_s urfaces.png

Spherical Coordinate System

The Euler constan

Cylindrical Coordinate System

The line element is

$$
\mathrm{d} \mathbf{r}=\mathrm{d} \rho \hat{\boldsymbol{\rho}}+\rho \mathrm{d} \varphi \hat{\boldsymbol{\varphi}}+\mathrm{d} z \hat{\mathbf{z}}
$$

The volume element is

$$
\mathrm{d} V=\rho \mathrm{d} \rho \mathrm{~d} \varphi \mathrm{~d} z
$$

The surface element in a surface of constant radius ρ (a vertical cylinder) is

$$
\mathrm{d} S_{\rho}=\rho \mathrm{d} \varphi \mathrm{~d} z
$$

The surface element in a surface of constant azimuth φ (a vertical half-plane) is

$$
\mathrm{d} S_{\varphi}=\mathrm{d} \rho \mathrm{~d} z
$$

The surface element in a surface of constant height z (a horizontal plane) is

$$
\mathrm{d} S_{z}=\rho \mathrm{d} \rho \mathrm{~d} \varphi
$$

The del operator in this system leads to the following expressions for gradient, divergence, curl and Laplacian:

$$
\begin{aligned}
& \nabla f=\frac{\partial f}{\partial \rho} \hat{\boldsymbol{\rho}}+\frac{1}{\rho} \frac{\partial f}{\partial \varphi} \hat{\boldsymbol{\varphi}}+\frac{\partial f}{\partial z} \hat{\mathbf{z}}, \\
& \nabla \cdot \boldsymbol{A}=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho A_{\rho}\right)+\frac{1}{\rho} \frac{\partial A_{\varphi}}{\partial \varphi}+\frac{\partial A_{z}}{\partial z} \\
& \nabla \times \boldsymbol{A}=\left(\frac{1}{\rho} \frac{\partial A_{z}}{\partial \varphi}-\frac{\partial A_{\varphi}}{\partial z}\right) \hat{\boldsymbol{\rho}}+\left(\frac{\partial A_{\rho}}{\partial z}-\frac{\partial A_{z}}{\partial \rho}\right) \hat{\boldsymbol{\varphi}}+\frac{1}{\rho}\left(\frac{\partial}{\partial \rho}\left(\rho A_{\varphi}\right)-\frac{\partial A_{\rho}}{\partial \varphi}\right) \hat{\mathbf{z}} \\
& \nabla^{2} f=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial f}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} f}{\partial \varphi^{2}}+\frac{\partial^{2} f}{\partial z^{2}} .
\end{aligned}
$$

Cylindrical Coordinate System

The following equations assume that θ is inclination from the z (polar) axis (ambiguous since x, y, and z are mutually normal):

The line element for an infinitesimal displacement from (r, θ, φ) to $(r+\mathrm{d} r, \theta+\mathrm{d} \theta, \varphi+\mathrm{d} \varphi)$ is

$$
\mathrm{d} \mathbf{r}=\mathrm{d} r \hat{\boldsymbol{r}}+r \mathrm{~d} \theta \hat{\boldsymbol{\theta}}+r \sin \theta \mathrm{~d} \varphi \hat{\boldsymbol{\varphi}}
$$

where

$$
\begin{aligned}
& \hat{\boldsymbol{r}}=\sin \theta \cos \varphi \hat{\boldsymbol{x}}+\sin \theta \sin \varphi \hat{\boldsymbol{y}}+\cos \theta \hat{\boldsymbol{z}} \\
& \hat{\boldsymbol{\theta}}=\cos \theta \cos \varphi \hat{\boldsymbol{x}}+\cos \theta \sin \varphi \hat{\boldsymbol{y}}-\sin \theta \hat{\boldsymbol{z}} \\
& \hat{\boldsymbol{\varphi}}=-\sin \varphi \hat{\boldsymbol{x}}+\cos \varphi \hat{\boldsymbol{y}}
\end{aligned}
$$

are the local orthogonal unit vectors in the directions of increasing r, θ, and φ, respectively, and $\hat{\boldsymbol{x}}, \hat{\boldsymbol{y}}$, and $\hat{\boldsymbol{z}}$ are the unit vectors in Cartesian coordinates.
The surface element spanning from θ to $\theta+\mathrm{d} \theta$ and φ to $\varphi+\mathrm{d} \varphi$ on a spherical surface at (constant) radius r is $\mathrm{d} S_{r}=r^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \varphi$.
Thus the differential solid angle is

$$
\mathrm{d} \Omega=\frac{\mathrm{d} S_{r}}{r^{2}}=\sin \theta \mathrm{d} \theta \mathrm{~d} \varphi
$$

The surface element in a surface of polar angle θ constant (a cone with vertex the origin) is

$$
\mathrm{d} S_{\theta}=r \sin \theta \mathrm{~d} \varphi \mathrm{~d} r
$$

The surface element in a surface of azimuth φ constant (a vertical half-plane) is

$$
\mathrm{d} S_{\varphi}=r \mathrm{~d} r \mathrm{~d} \theta
$$

The volume element spanning from r to $r+\mathrm{d} r, \theta$ to $\theta+\mathrm{d} \theta$, and φ to $\varphi+\mathrm{d} \varphi$ is

$$
\mathrm{d} V=r^{2} \sin \theta \mathrm{~d} r \mathrm{~d} \theta \mathrm{~d} \varphi
$$

References

[1] http://en.wikipedia.org/
[2] M.L. Boas, "Mathematical Methods in the Physical Sciences"
[3] E. Kreyszig, "Advanced Engineering Mathematics"
[4] D. G. Zill, W. S. Wright, "Advanced Engineering Mathematics"

