
Young Won Lim
9/26/24

OpenMP Synchronization (5A)

Young Won Lim
9/26/24

 Copyright (c) 2024 - 2016 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

OpenMP
Synchronization (5A) 3 Young Won Lim

9/26/24

Based on

https://www.openmp.org/wp-content/uploads/OpenMP-4.0-C.pdf

https://www.openmp.org/wp-content/uploads/OpenMP-4.0-C.pdf

OpenMP
Synchronization (5A) 4 Young Won Lim

9/26/24

threads communicate through shared variables.

● uncoordinated access of these variables

 can lead to undesired effects.

● two threads update (write) a shared variable

 in the same step of execution,

 the result is dependent on the way this variable is accessed.

 a race condition.

https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf

Synchronization (1)

OpenMP
Synchronization (5A) 5 Young Won Lim

9/26/24

● to prevent race condition,

the access to shared variables must be synchronized.

● synchronization can be time consuming.

● the barrier directive is set to synchronize all threads.

● all threads wait at the barrier

until all of them have arrived.

https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf

Synchronization (2)

OpenMP
Synchronization (5A) 6 Young Won Lim

9/26/24

● synchronization imposes order constraints
● used to protect access to shared data

High level synchronization:
● critical
● atomic
● barrier
● ordered

Low level synchronization:
● flush
● locks (both simple and nested)

https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf

Synchronization (3)

OpenMP
Synchronization (5A) 7 Young Won Lim

9/26/24

Mutual exclusion: only one thread at a time can enter a critical region.
{

double res;

#pragma omp parallel

{

double B;

int i, id, nthrds;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

for(i=id; i<niters; i+=nthrds) {

B = some_work(i);

#pragma omp critical

consume(B,res);

}

}

}

https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf

Critical (1)

Threads wait here: only one thread

at a time calls consume().

So this is a piece of sequential code

Inside the for loop.

OpenMP
Synchronization (5A) 8 Young Won Lim

9/26/24

Sum = 0;

#pragma omp parallel shared(n,a,sum) private(TID,sumLocal)

{

TID = omp_get_thread_num();

sumLocal = 0;

#pragma omp for

for (i=0; I<n; i++)

sumLocal += a[i];

#pragma omp critical (update_sum)

{

sum += sumLocal;

printf(“TID=%d: sumLocal=%d sum=%d\n”,

 TID, sumLocal, sum)

}

} /* --- End of parallel region --- */

https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf

Critical (2)

OpenMP
Synchronization (5A) 9 Young Won Lim

9/26/24

{

…

#pragma omp parallel

{

#pragma omp for nowait shared(best_cost)

for(i=0; i<N; i++) {

int my_cost;

my_cost = estimate(i);

#pragma omp critical

{

if(best_cost < my_cost)

best_cost = my_cost;

}

}

}

}

https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf

Critical (4)

Only one thread at a time

executes if() statement.

This ensures mutual exclusion

When accessing shared data.

Without critical, this will set up

a race condition, in which

The computation exhibits

nondeterministic behavior

when performed by multiple

threads accessing a shared

variable

OpenMP
Synchronization (5A) 10 Young Won Lim

9/26/24

atomic provides mutual exclusion but only applies to the

load/update of a memory location.

• This is a lightweight, special form of a critical section.

• It is applied only to the (single) assignment statement that

immediately follows it.

https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf

Atomic (1-1)

Atomic only protects the update of X.

OpenMP
Synchronization (5A) 11 Young Won Lim

9/26/24

{

…

#pragma omp parallel

{

double tmp, B;

….

#pragma omp atomic

{

X+=tmp;

}

}

}

https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf

Atomic (1-2)

Atomic only protects the update of X.

OpenMP
Synchronization (5A) 12 Young Won Lim

9/26/24

Int ic, I, n;

Ic = 0;

#pragma omp parallel shared(n,ic) private(i)

for (i=0; i++, I<n)

{

#pragma omp atomic

ic = ic + 1;

}

“ic” is a counter. The atomic construct ensures that no updates

are lost when multiple threads are updating a counter value.

https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf

Atomic (2)

Atomic only protects the update of X.

OpenMP
Synchronization (5A) 13 Young Won Lim

9/26/24

• Atomic construct may only be used together with an expression

statement with one of operations: +, *, -, /, &, ^, |, <<, >>

Int ic, I, n ;

Ic=0;

#pragma omp parallel shared(n,ic) private(i)

for (i=0; i++, I<n)

{

#pragma omp atomic

ic = ic + bigfunc();

}

The atomic construct does not prevent multiple threads

from executing the function bigfunc() at the same time.

https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf

Atomic (3)

Atomic only protects the update of X.

OpenMP
Synchronization (5A) 14 Young Won Lim

9/26/24

Suppose each of the following two loops are run in parallel

over i, this may give a wrong answer.

29

for(i= 0; i<N; i++)

a[i] = b[i] + c[i];

for(i= 0; i<N; i++)

d[i] = a[i] + b[i];

There could be a data race in a[].

https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf

Barrier (1)

Atomic only protects the update of X.

OpenMP
Synchronization (5A) 15 Young Won Lim

9/26/24

for(i= 0; i<N; i++)

a[i] = b[i] + c[i];

for(i= 0; i<N; i++)

d[i] = a[i] + b[i];

wait

barrier

To avoid race condition:

• NEED: All threads wait at the barrier point and only continue

when all threads have reached the barrier point.

Barrier syntax:

• #pragma omp barrier

https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf

Barrier (2)

Atomic only protects the update of X.

OpenMP
Synchronization (5A) 16 Young Won Lim

9/26/24

barrier: each threads waits until all threads arrive

31

#pragma omp parallel shared (A,B,C) private (id)

{

id=omp_get_thread_num();

A[id] = big_calc1(id);

#pragma omp barrier

#pragma omp for

for(i=0; i<N;i++) {C[i]=big_calc3(i,A);}

#pragma omp for nowait

for(i=0;i<N;i++) {B[i]=big_calc2(i,C);}

A[id]=big_calc4(id);

}

https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf

Barrier (3)

Implicit barrier at

the end of for

Construct

No implicit barrier

due to nowait

Implicit barrier at the end of

a parallel region

OpenMP
Synchronization (5A) 17 Young Won Lim

9/26/24

When to Use Barriers

• If data is updated asynchronously and data integrity is at risk

• Examples:

– Between parts in the code that read and write

 the same section of memory

– After one timestep / iteration in a numerical solver

• Barriers are expensive and also

 may not scale to a large number of processors

https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf

Barrier (4)

OpenMP
Synchronization (5A) 18 Young Won Lim

9/26/24

Barrier Synchronization is

"each thread should wait until all threads arrive"

Mutual exclusion:

"only one thread can access x resource"

Constructs:

Note that pragmas are always applicable to the thing directly below.

So use blocks if you want to effect multiple things.

https://dev.to/winstonpuckett/openmp-notes-1cfa

Synchronization

OpenMP
Synchronization (5A) 19 Young Won Lim

9/26/24

Only one resource may access at a time:

int sum = 0;

#pragma omp parallel

{

 int id = omp_get_thread_num();

#pragma omp critical

 sum += id;

}

https://dev.to/winstonpuckett/openmp-notes-1cfa

Critical

OpenMP
Synchronization (5A) 20 Young Won Lim

9/26/24

#pragma omp atomic

#pragma omp atomic read|write|update|capture

"If the low-level, high performance constructs for mutual exclusion

exist on this hardware, use them.

Otherwise act like this is a critical section."

Is there any benefit to critical sections in this case?

Perhaps critical sections allow for function calls,

where atomic only refers to a scalar set operation?

Yes - this is just available for simple binary operations to update values.

https://dev.to/winstonpuckett/openmp-notes-1cfa

Atomic

OpenMP
Synchronization (5A) 21 Young Won Lim

9/26/24

Wait until all threads process to this point before moving on:

#pragma omp parallel

{

 int id = omp_get_thread_num();

#pragma omp barrier

 printf("%d", id);

}

https://dev.to/winstonpuckett/openmp-notes-1cfa

Barrier

OpenMP
Synchronization (5A) 22 Young Won Lim

9/26/24

Compilers are really good at optimizing where reads and writes occur.

The order that you place operations in

may not be the same order things happen

if they are deemed to have equivalent results.

This holds true for OpenMP.

If you need to make reads and writes consistent,

you need to use a Flush.

https://dev.to/winstonpuckett/openmp-notes-1cfa

Flush (1-1)

OpenMP
Synchronization (5A) 23 Young Won Lim

9/26/24

Creates a synchronization point that says,

"you are guaranteed to have

a consistent view of memory with the flush set."

The flush set is the list of variables inside parenthesis

passed to the flush pragma.

When you leave off the flush set,

everything must be consistent.

https://dev.to/winstonpuckett/openmp-notes-1cfa

Flush (1-2)

OpenMP
Synchronization (5A) 24 Young Won Lim

9/26/24

All reads and writes before the flush

must resolve to memory before and

reads or writes to memory after the flush set.

Flushes with overlapping flush sets

may not be reordered with respect to each other.

For all intents and purposes,

flush is equivalent to a fence in compiler terminology.

https://dev.to/winstonpuckett/openmp-notes-1cfa

Flush (2-1)

OpenMP
Synchronization (5A) 25 Young Won Lim

9/26/24

Flushes are hard to get right, so OpenMP provides implicit flushes at:

 entering/exiting parallel regions

 implicit/explicit barriers

 entry/exit to critical sections

 set/unset of a lock

https://dev.to/winstonpuckett/openmp-notes-1cfa

Flush (2-2)

OpenMP
Synchronization (5A) 26 Young Won Lim

9/26/24

Flush makes variables available to other threads.

If you spin lock on a variable,

you also need to put a flush in the body of the loop.

That forces the compiler to read the value every time

not from a cache.

#pragma omp flush

#pragma omp flush(variableOne, variableTwo)

https://dev.to/winstonpuckett/openmp-notes-1cfa

Flush (3)

OpenMP
Synchronization (5A) 27 Young Won Lim

9/26/24

#pragma omp master

schedules the next block on the main thread.

For most use cases of master,

you usually want a barrier on the next statement.

https://dev.to/winstonpuckett/openmp-notes-1cfa

Master

OpenMP
Synchronization (5A) 28 Young Won Lim

9/26/24

Recall that critical sections are introduced in OpenMP with the critical directive:

#pragma omp critical

{

 /* critical section here */

}

This is an anonymous critical section. OpenMP will only allow one thread into

this critical section at one time.

There is another usage of OpenMP critical sections wherein we have multiple

critical sections that all must be preserved.

https://ianfinlayson.net/class/cpsc425/notes/13-openmp-sync

Critical (1)

OpenMP
Synchronization (5A) 29 Young Won Lim

9/26/24

Clearly, we do not want one thread to increment

and another to decrement at the same time.

The following approach will not work:

int global_data;

...

/* write in one location */

#pragma omp critical

global_data++;

...

/* write in another location */

#pragma omp critical

global_data--;

https://ianfinlayson.net/class/cpsc425/notes/13-openmp-sync

Critical (2)

OpenMP
Synchronization (5A) 30 Young Won Lim

9/26/24

For example, if we have some data

that is written in multiple places in our program:

int global_data;

...

/* write in one location */

global_data++;

...

/* write in another location */

global_data--;

https://ianfinlayson.net/class/cpsc425/notes/13-openmp-sync

Critical (3)

OpenMP
Synchronization (5A) 31 Young Won Lim

9/26/24

We can link the two critical sections with a named critical section:

int global_data;

...

/* write in one location */

#pragma omp critical (global_data_lock)

global_data++;

...

/* write in another location */

#pragma omp critical (global_data_lock)

global_data--;

This causes OpenMP to enforce the rule

that only one thread can be in either critical section at a time.

https://ianfinlayson.net/class/cpsc425/notes/13-openmp-sync

Critical (4)

OpenMP
Synchronization (5A) 32 Young Won Lim

9/26/24

If, as in the example above,

our critical section is a single assignment,

OpenMP provides a potentially more efficient way of protecting this.

OpenMP provides an atomic directive

which, like critical, specifies the next statement must be done

by one thread at a time:

#pragma omp atomic

global_data++;

https://ianfinlayson.net/class/cpsc425/notes/13-openmp-sync

Atomic operation (1)

OpenMP
Synchronization (5A) 33 Young Won Lim

9/26/24

Unlike a critical directive:

 The statement under the directive can only be

a single C assignment statement.

 It can be of the form: x++, ++x, x-- or --x.

 It can also be of the form x OP= expression

where OP is some binary operator.

 No other statement is allowed.

https://ianfinlayson.net/class/cpsc425/notes/13-openmp-sync

Atomic operation (2-1)

OpenMP
Synchronization (5A) 34 Young Won Lim

9/26/24

The motivation for the atomic directive is that

some processors provide single instructions

for operations such as x++.

These are called Fetch-and-add instructions.

As a rule, if your critical section can be done

in an atomic directive, it should.

It will not be slower, and might be faster.

https://ianfinlayson.net/class/cpsc425/notes/13-openmp-sync

Atomic operation (2-2)

OpenMP
Synchronization (5A) 35 Young Won Lim

9/26/24

Recall that a barrier is a point in code

where we want all threads to reach before continuing on:

The following OpenMP program spawns a number of threads.

How could we add a barrier in the middle of the function?

https://ianfinlayson.net/class/cpsc425/notes/13-openmp-sync

Barrier (1)

OpenMP
Synchronization (5A) 36 Young Won Lim

9/26/24

#include <unistd.h>

#include <stdlib.h>

#include <omp.h>

#include <stdio.h>

#define THREADS 8

https://ianfinlayson.net/class/cpsc425/notes/13-openmp-sync

Barrier (2)

OpenMP
Synchronization (5A) 37 Young Won Lim

9/26/24

void worker() { /* the function called for each thread */

 int id = omp_get_thread_num(); /* get our thread id */

 printf("Thread %d starting!\n", id); /* we start to work */

 /* simulate the threads taking slightly different amounts of time by sleeping

 * for our thread id seconds */

 sleep(id);

 printf("Thread %d is done its work!\n", id);

 /* TODO make a barrier */

 printf("Thread %d is past the barrier!\n", id);

}

https://ianfinlayson.net/class/cpsc425/notes/13-openmp-sync

Barrier (3)

OpenMP
Synchronization (5A) 38 Young Won Lim

9/26/24

int main() {

 /* have all the threads run worker */

 # pragma omp parallel num_threads(THREADS)

 worker();

 return 0;

}

https://ianfinlayson.net/class/cpsc425/notes/13-openmp-sync

Barrier (4)

OpenMP
Synchronization (5A) 39 Young Won Lim

9/26/24

This is easily accomplished with OpenMP:

#include <unistd.h>

#include <stdlib.h>

#include <omp.h>

#include <stdio.h>

#define THREADS 8

/* the function called for each thread */

void worker() {

 /* get our thread id */

 int id = omp_get_thread_num();

 /* we start to work */

 printf("Thread %d starting!\n", id);

https://ianfinlayson.net/class/cpsc425/notes/13-openmp-sync

Barrier (5-1)

OpenMP
Synchronization (5A) 40 Young Won Lim

9/26/24

 /* simulate the threads taking slightly different amounts of time by sleeping

 * for our thread id seconds */

 sleep(id);

 printf("Thread %d is done its work!\n", id);

 /* a barrier */

 #pragma omp barrier

 printf("Thread %d is past the barrier!\n", id);

}

https://ianfinlayson.net/class/cpsc425/notes/13-openmp-sync

Barrier (5-2)

OpenMP
Synchronization (5A) 41 Young Won Lim

9/26/24

int main() {

 /* have all the threads run worker */

 # pragma omp parallel num_threads(THREADS)

 Worker()

The barrier directive causes OpenMP to insert a barrier at that point.

https://ianfinlayson.net/class/cpsc425/notes/13-openmp-sync

Barrier (5-3)

OpenMP
Synchronization (5A) 42 Young Won Lim

9/26/24

This is easily accomplished with OpenMP:

#include <unistd.h>

#include <stdlib.h>

#include <omp.h>

#include <stdio.h>

#define THREADS 8

https://ianfinlayson.net/class/cpsc425/notes/13-openmp-sync

Barrier (5)

OpenMP
Synchronization (5A) 43 Young Won Lim

9/26/24

/* the function called for each thread */

void worker() {

 /* get our thread id */

 int id = omp_get_thread_num();

 /* we start to work */

 printf("Thread %d starting!\n", id);

 /* simulate the threads taking slightly different amounts of time by sleeping

 * for our thread id seconds */

 sleep(id);

 printf("Thread %d is done its work!\n", id);

 /* a barrier */

 #pragma omp barrier

 printf("Thread %d is past the barrier!\n", id);

}

https://ianfinlayson.net/class/cpsc425/notes/13-openmp-sync

Barrier (6)

OpenMP
Synchronization (5A) 44 Young Won Lim

9/26/24

int main() {

 /* have all the threads run worker */

 # pragma omp parallel num_threads(THREADS)

 worker();

 return 0;

}

The barrier directive causes OpenMP to insert a barrier at that point.

https://ianfinlayson.net/class/cpsc425/notes/13-openmp-sync

Barrier (7)

OpenMP
Synchronization (5A) 45 Young Won Lim

9/26/24

Suppose we wanted one portion of our threaded code to execute in thread

order. This is often desirable for output as it is typically non-deterministic.

The following program may execute in thread order, but probably will not:

#include <stdlib.h>

#include <omp.h>

#include <stdio.h>

#define THREADS 16

/* the function called for each thread */

void worker() {

 /* get our thread id */

 int id = omp_get_thread_num();

 printf("Thread %d says hello!\n", id);

}

https://ianfinlayson.net/class/cpsc425/notes/13-openmp-sync

Ordered Sections (1)

OpenMP
Synchronization (5A) 46 Young Won Lim

9/26/24

int main() {

 int i;

 #pragma omp parallel for num_threads(THREADS)

 for (i = 0; i < THREADS; i++) {

 worker();

 }

 return 0;

}

https://ianfinlayson.net/class/cpsc425/notes/13-openmp-sync

Ordered Sections (2)

Young Won Lim
9/26/24

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

