Row Reduction

Copyright (c) 2012 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".
Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Linear Equations

Linear Equations

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$\begin{bmatrix} a_{21} & a_{22} & \cdots & a_{2n} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{bmatrix} b_2 \end{bmatrix}$$

$$\begin{bmatrix} a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = b_m$$

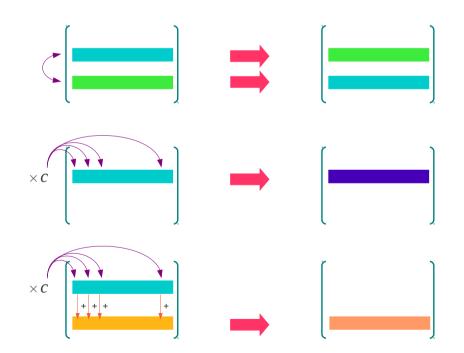
Example

$$egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \hline a_{21} & a_{22} & \cdots & a_{2n} \\ \hline \vdots & \vdots & & \vdots \\ \hline a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{bmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_n \end{pmatrix} = \begin{pmatrix} +8 \\ -11 \\ -3 \end{pmatrix}$$

Gauss-Jordan Elimination



Gauss-Jordan Elimination - Step 1

$$+2x_1 + x_2 - x_3 = 8$$
 (L_1)

$$-3x_1 - x_2 + 2x_3 = -11 \qquad (L_2)$$

$$-2x_1 + x_2 + 2x_3 = -3 \qquad (L_3)$$

$$+1x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 = 4$$
 $(\frac{1}{2} \times L_1)$

$$+1x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 = 4$$
 $(\frac{1}{2} \times L_1)$
 $-3x_1 - x_2 + 2x_3 = -11$ (L_2)

$$-2x_1 + x_2 + 2x_3 = -3 (L_3)$$

Gauss-Jordan Elimination – Step 2

$$+1x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 = +4$$
 (L₁)

$$-3x_1 - x_2 + 2x_3 = -11 \qquad (L_2)$$

$$-2x_1 + x_2 + 2x_3 = -3 \qquad (L_3)$$

$$+3x_1 + \frac{3}{2}x_2 - \frac{3}{2}x_3 = +12$$
 $(3 \times L_1)$
 $-3x_1 - x_2 + 2x_3 = -11$ (L_2)

$$+2x_1 + \frac{2}{2}x_2 - \frac{2}{2}x_3 = +8 \qquad (2 \times L_1)$$

$$-2x_1 + x_2 + 2x_3 = -3 \qquad (L_3)$$

$$+1x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 = +4$$
 (L₁)

$$0x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 = +1 \qquad (3 \times L_1 + L_2)$$

$$0x_1 + 2x_2 + 1x_3 = +5$$
 $(2 \times L_1 + L_3)$

Gauss-Jordan Elimination – Step 3

$$+1x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 = +4 \qquad (L_1)$$

$$0x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 = +1 \qquad (L_2)$$

$$0x_1 + 2x_2 + 1x_3 = +5 (L_3)$$

$$0x_1 + 1x_2 + 1x_3 = +2$$
 $(2 \times L_2)$

Gauss-Jordan Elimination - Step 4

$$+1x_{1} + \frac{1}{2}x_{2} - \frac{1}{2}x_{3} = +4 \qquad (L_{1})$$

$$0x_{1} + 1x_{2} + 1x_{3} = +2 \qquad (L_{2})$$

$$0x_{1} + 2x_{2} + 1x_{3} = +5 \qquad (L_{3})$$

$$0x_1 - 2x_2 - 2x_3 = -4 [-2 \times L_2]$$

$$0x_1 + 2x_2 + 1x_3 = +5 (L_3)$$

$$\begin{aligned} &+ 1x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 = +4 & (L_1) \\ &0x_1 + 1x_2 + 1x_3 = +2 & (L_2) \\ &0x_1 + 0x_2 - 1x_3 = +1 & \boxed{-2 \times L_2 + L_3} \end{aligned}$$

Gauss-Jordan Elimination – Step 5

$$+1x_{1} + \frac{1}{2}x_{2} - \frac{1}{2}x_{3} = +4 \qquad (L_{1})$$

$$0x_{1} + 1x_{2} + 1x_{3} = +2 \qquad (L_{2})$$

$$0x_{1} + 0x_{2} - 1x_{3} = +1 \qquad (L_{3})$$

$$0x_1 - 0x_2 + 1x_3 = -1$$
 $(-1 \times L_3)$ 0

$$+1x_{1} + \frac{1}{2}x_{2} - \frac{1}{2}x_{3} = +4 \qquad (L_{1})$$

$$0x_{1} + 1x_{2} + 1x_{3} = +2 \qquad (L_{2})$$

$$0x_{1} + 0x_{2} + 1x_{3} = -1 \qquad (-1 \times L_{3})$$

$$+1 + 1/2 - 1/2 \qquad +4$$

$$0 + 1 + 1 \qquad +2$$

$$0 = 0 \qquad +1 \qquad -1$$

Forward Phase

$$\begin{bmatrix} +2 & +1 & -1 & +8 \\ -3 & -1 & +2 & -11 \\ -2 & +1 & +2 & -3 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ -3 & -1 & +2 & -11 \\ -2 & +1 & +2 & -3 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1/2 & +1/2 & +1 \\ 0 & +2 & +1 & +5 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & +2 & +1 & +5 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & -1 & -1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & -1 & -1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & -1 & -1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & -1 & -1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & -1 & -1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & -1 & -1/2 & +4 \\ 0 & -1 & -1/2 & +4 \\ 0 & -1 & -1/2 & +4 \\ 0 & -1 & -1/2 & +4 \\ 0 & -1/2 & -1/2 & +4 \\ 0 & -1/2 & -1/2 & +4 \\ 0 & -1/2 & -1/2 & +4 \\ 0 & -1/2 & -1/2 & +4 \\ 0 & -1/2 & -1/2 & +4 \\ 0 & -1/2 & -1/2 & +4 \\ 0 & -1/2 & -1/2 & +4 \\ 0 & -1/2 & -1/2 & +4 \\ 0 & -1/2 & -1/2 & +4 \\ 0 & -1/2 & -1/2 & +4 \\ 0 & -1/2 & -1/2 & +4 \\ 0 & -1/2 & -1/2 & +4 \\ 0 & -1/2 & -1/2 & +4 \\$$

Forward Phase - Gaussian Elimination

Gauss-Jordan Elimination - Step 6

$$+1x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 = +4$$
 (L₁)

$$0x_1 + 1x_2 + 1x_3 = +2 (L_2)$$

$$0x_1 + 0x_2 + 1x_3 = -1 \qquad (L_3)$$

$$0x_1 + 0x_2 + \frac{1}{2}x_3 = -\frac{1}{2} \qquad \left(+\frac{1}{2} \times L_3 \right)$$

$$+1x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 = +4$$
 (L₁)

$$0x_1 + 0x_2 - 1x_3 = +1 \qquad (-1 \times L_3)$$

$$0x_1 + 1x_2 + 1x_3 = +2 (L_2)$$

$$+1x_1 + \frac{1}{2}x_2 + 0x_3 = +\frac{7}{2}$$
 $(+\frac{1}{2} \times L_3 + L_1)$

$$0x_1 + 1x_2 + 0x_3 = +3$$
 $(-1 \times L_3 + L_2)$

$$0x_1 + 0x_2 + 1x_3 = -1 (L_3)$$

Gauss-Jordan Elimination – Step 7

$$+1x_{1} + \frac{1}{2}x_{2} + 0x_{3} = +\frac{7}{2} \qquad (L_{1})$$

$$0x_{1} + 1x_{2} + 0x_{3} = +3 \qquad (L_{2})$$

$$0x_{1} + 0x_{2} + 1x_{3} = -1 \qquad (L_{3})$$

$$0x_1 - \frac{1}{2}x_2 + 0x_3 = -\frac{3}{2} \qquad \left(-\frac{1}{2} \times L_2\right) + 1x_1 + 0x_2 - 0x_3 = +2 \qquad (L_1)$$

Backward Phase

Gauss-Jordan Elimination

Forward Phase – Gaussian Elimination

Backward Phase - Guass-Jordan Elimination

$$\begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & +1 & -1 \end{bmatrix} \xrightarrow{+4} \begin{bmatrix} +1 & +1/2 & 0 & +7/2 \\ 0 & +1 & 0 & +3 \\ 0 & 0 & +1 & -1 \end{bmatrix} \xrightarrow{+7/2} \begin{bmatrix} +1 & 0 & 0 & +2 \\ 0 & +1 & 0 & +3 \\ 0 & 0 & +1 & -1 \end{bmatrix} \xrightarrow{+3} \begin{bmatrix} +1 & 0 & 0 & +2 \\ 0 & +1 & 0 & +3 \\ 0 & 0 & +1 & -1 \end{bmatrix}$$

REF: Row Echelon Forms (1)

zero rows

Should be grouped at the bottom

A leading 1

The 1st non-zero element should be one

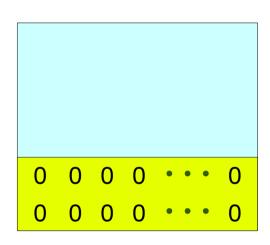
Any successive non-zero rows

The leading 1 of the lower row should be farther to the right than the leading 1 of the higher row

REF: Row Echelon Forms (2)

zero rows

Should be grouped at the bottom

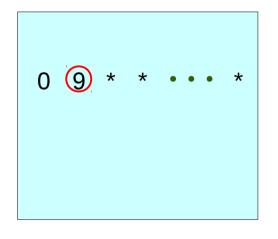


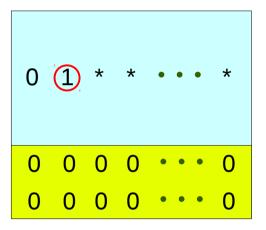
REF: Row Echelon Forms (3)

non-zero row

A leading one

The 1st non-zero element should be one

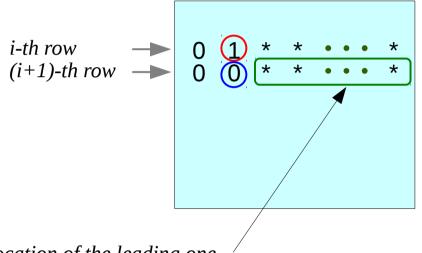


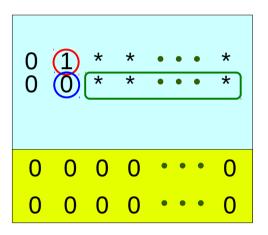


REF: Row Echelon Forms (4)

Any successive non-zero rows

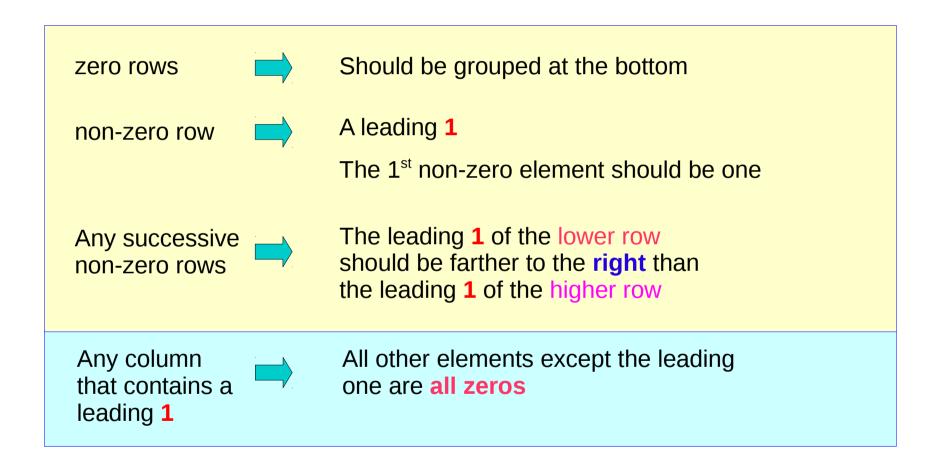
The leading **1** of the lower row should be farther to the **right** than the leading **1** of the higher row





The possible location of the leading one

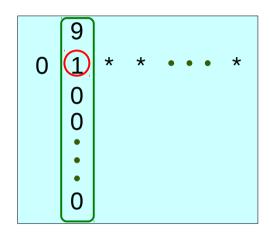
RREF: Reduced Row Echelon Forms (1)

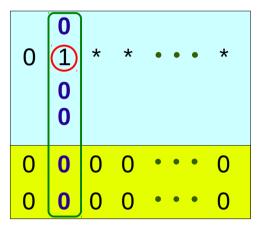


RREF: Reduced Row Echelon Forms (2)

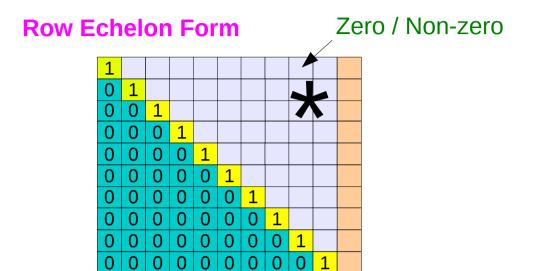
Any column that contains a leading one

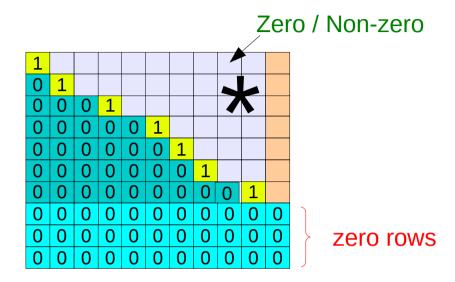
All other elements except the leading one are all zeros



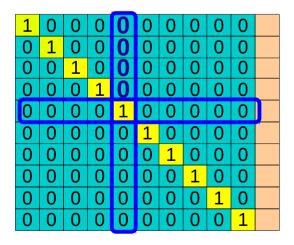


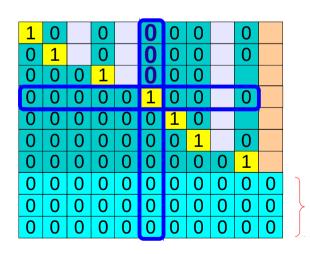
Examples





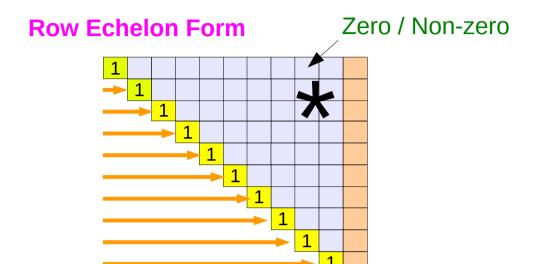
Reduced Row Echelon Form

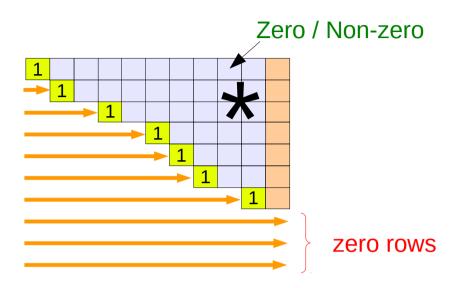




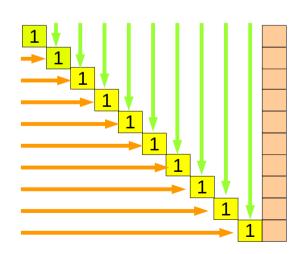
zero rows

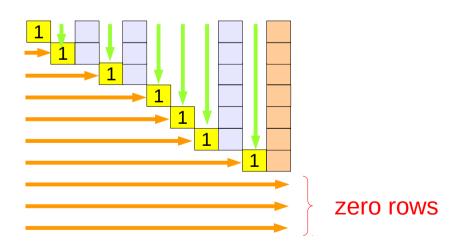
Examples





Reduced Row Echelon Form





Linear Systems of 3 Unknowns

$$(\text{Eq 1}) \implies a_{11} \quad x_1 \quad + \quad a_{12} \quad x_2 \quad + \quad a_{13} \quad x_3 \quad = \quad b_1$$

$$(\text{Eq 2}) \implies a_{21} \quad x_1 \quad + \quad a_{22} \quad x_2 \quad + \quad a_{23} \quad x_3 \quad = \quad b_2$$

$$(\text{Eq 3}) \implies a_{31} \quad x_1 \quad + \quad a_{32} \quad x_2 \quad + \quad a_{33} \quad x_3 \quad = \quad b_3$$

Leading and Free Variables

1	0	0	5
0	1	0	7
0	0	1	9

1	-5	1	4
0	0	0	0
0	0	0	0

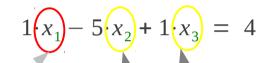
$$1(x_1) + 0 \cdot x_2 + 0 \cdot x_3 = 5$$

$$0 \cdot x_1 + 1(x_2) + 0 \cdot x_3 = 7$$

$$0 \cdot x_1 + 0 \cdot x_2 + 1(x_3) = 9$$

$$1(x_1) + 3 \cdot x_3 = -1$$

$$1(x_2) - 4 \cdot x_3 = 2$$



 1
 0
 0

 0
 1
 2

 0
 0
 1

Other remaining varaible free variables

$$0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 = 1$$

Free Variables as Parameters (1)

$$1(x_1) + 0 \cdot x_2 + 0 \cdot x_3 = 5$$

$$0 \cdot x_1 + 1(x_2) + 0 \cdot x_3 = 7$$

$$0 \cdot x_1 + 0 \cdot x_2 + 1(x_3) = 9$$

$$1(x_1) + 3 \cdot x_3 = -1$$

$$1(x_2) - 4 \cdot x_3 = 2$$

$$1(x_1) - 5 \cdot x_2 + 1 \cdot x_3 = 4$$

Solve for a leading variable

$$\begin{cases} x_1 = 5 \\ x_2 = 7 \\ x_3 = 9 \end{cases}$$

$$\begin{cases} x_1 = -1 - 3 \cdot x_3 \\ x_2 = 2 + 4 \cdot x_3 \end{cases}$$

$$x_1 = 4 + 5 \cdot x_2 - 1 \cdot x_3$$

$$\begin{cases} x_1 = 5 \\ x_2 = 7 \\ x_3 = 9 \end{cases}$$

$$x_3 = t$$

$$\begin{cases} x_1 = -1 - 3t \\ x_2 = 2 + 4t \end{cases}$$

$$\begin{cases} x_2 = t \end{cases}$$

$$x_2 = s$$
 $x_3 = t$

$$\begin{cases} x_1 = 4 + 5 \cdot s - 1 \cdot t \\ x_2 = s \\ x_3 = t \end{cases}$$

Parametric Solutions (2)

$$1(x_1) + 0 \cdot x_2 + 0 \cdot x_3 = 5$$

$$0 \cdot x_1 + 1(x_2) + 0 \cdot x_3 = 7$$

$$0 \cdot x_1 + 0 \cdot x_2 + 1(x_3) = 9$$

$$1(x_1) + 3 \cdot x_3 = -1$$

$$1(x_2) - 4 \cdot x_3 = 2$$

$$1(x_1) - 5 \cdot x_2 + 1 \cdot x_3 = 4$$

$$\begin{cases} x_1 = 5 \\ x_2 = 7 \\ x_3 = 9 \end{cases}$$

$$\begin{cases} x_1 = t \\ x_2 = \frac{1}{3}(-4t+2) \\ x_3 = \frac{1}{3}(-t-1) \end{cases}$$

$$\begin{cases} x_1 = s \\ x_2 = t \\ x_3 = -s + 5t + 4 \end{cases}$$

many other forms of parametric solutions

$$\begin{cases} x_1 = \frac{1}{4}(-3t+2) \\ x_2 = t \\ x_3 = \frac{1}{4}(t-2) \end{cases}$$

$$\begin{cases} x_1 = s \\ x_2 = \frac{1}{5}(s + t - 4) \\ x_3 = t \end{cases}$$

$$\begin{cases} x_1 = -1 - 3t \\ x_2 = 2 + 4t \\ x_3 = t \end{cases}$$

$$\begin{cases} x_1 = 4 + 5 \cdot s - 1 \cdot t \\ x_2 = s \\ x_3 = t \end{cases}$$

Many Solutions (3)

$$1(x_1) + 0 \cdot x_2 + 0 \cdot x_3 = 5$$

$$0 \cdot x_1 + 1(x_2) + 0 \cdot x_3 = 7$$

$$0 \cdot x_1 + 0 \cdot x_2 + 1(x_3) = 9$$

$$1(x_1) + 3 \cdot x_3 = -1$$

$$1(x_2) - 4 \cdot x_3 = 2$$

$$1(x_1) - 5 \cdot x_2 + 1 \cdot x_3 = 4$$

$$\begin{cases} x_1 = 5 \\ x_2 = 7 \\ x_3 = 9 \end{cases}$$

$$\begin{cases} x_1 = -1 - 3t \\ x_2 = 2 + 4t \\ x_3 = t \end{cases}$$

$$\begin{cases} x_1 = 4 + 5 \cdot s - 1 \cdot t \\ x_2 = s \\ x_3 = t \end{cases}$$

$$(-1, +2, 0)$$

 $(-4, +6, 1)$
 $(-7, +10, 2)$
 $(-10, +14, 2)$

$$x_2 = -\frac{4}{3}x_1 + \frac{2}{3}$$

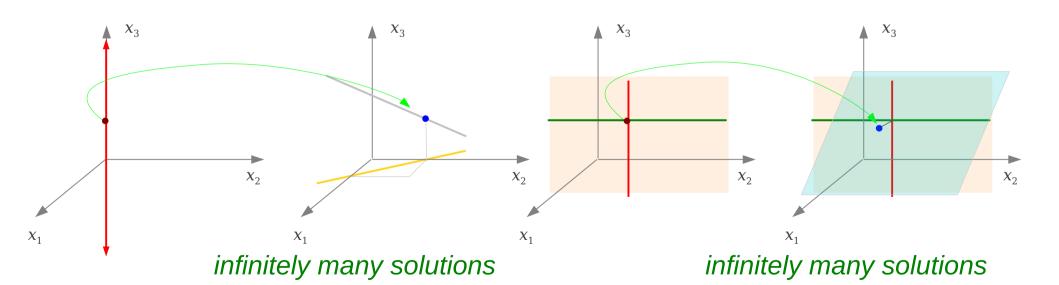
Solutions in R³ (4)

$$\begin{cases} x_1 = -1 - 3t \\ x_2 = 2 + 4t \\ x_3 = t \end{cases}$$
 free variable

$$4x_1 + 3x_2 = 2$$

$$\begin{cases} x_1 = 4 + 5 \cdot s - 1 \cdot t \\ x_2 = s & \leftarrow \text{ free variable} \\ x_3 = t & \leftarrow \text{ free variable} \end{cases}$$

$$x_1 - 5x_2 + x_3 = 4$$



Solutions in R³ and No of Free Variables (5)

1	0	0	5
0	1	0	7
0	0	1	9

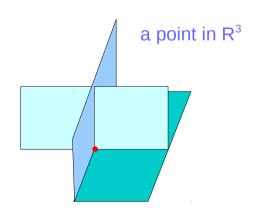
1	0	3	-1
0	1	-4	2
0	0	0	0

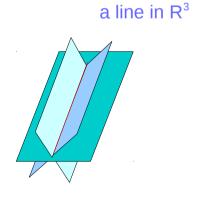
1	-5	1	4
0	0	0	0
0	0	0	0

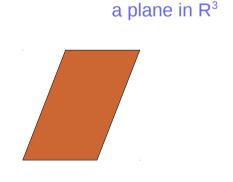
$$\begin{cases} x_1 = 5 \\ x_2 = 7 \\ x_3 = 9 \end{cases}$$

$$\begin{cases} x_1 = -1 - 3t \\ x_2 = 2 + 4t \\ x_3 = t \end{cases}$$
 free variable

$$\begin{cases} x_1 = 4 + 5 \cdot s - 1 \cdot t \\ x_2 = s & \qquad \text{free variable} \\ x_3 = t & \qquad \text{free variable} \end{cases}$$







Consistent Linear System

A linear system with at least one solution

A Consistent Linear System

A linear system with no solutions

A Inconsistent Linear System

General Solution

A linear system with infinitely many solutions

Solve for a leading variable

Treat a free variable as a parameter

A set of parametric equations

All solutions can be obtained by assigning numerical values to those parameters

Called a general solution

Homogeneous System

All constant terms are zero

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

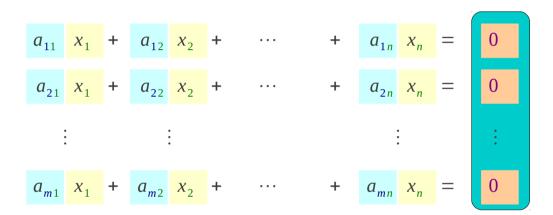
All constant terms are zero

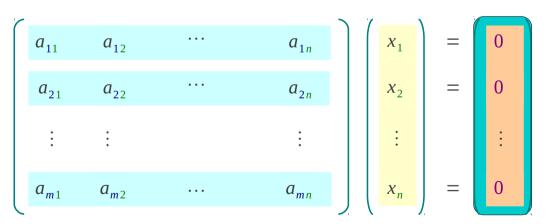
Solutions of a Homogeneous System

All homogeneous systems pass through the <u>origin</u>

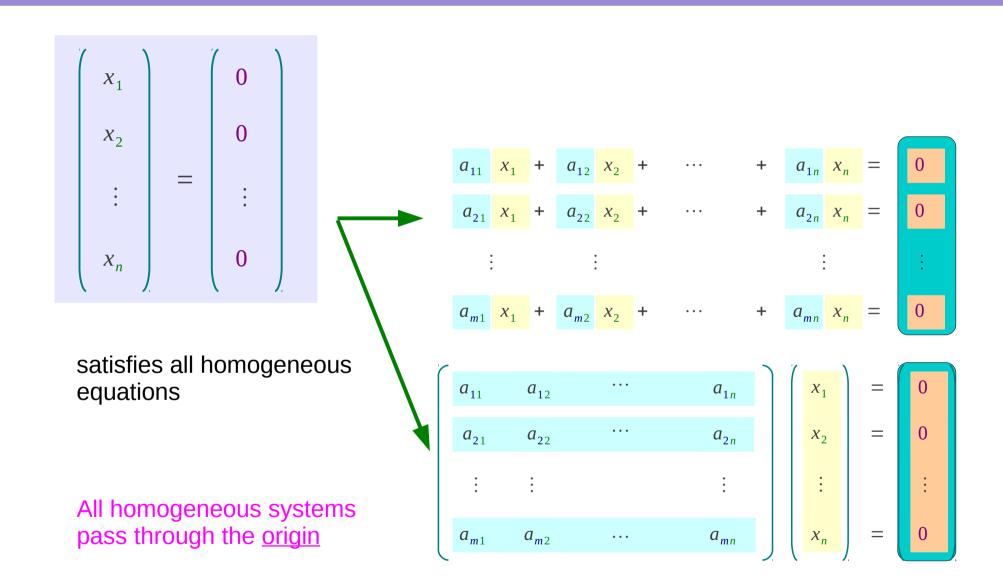
The homogeneous system has

- * only the trivial solution
- * many solutions in addition to the trivial solution





Trivial Solution



Impossible Solution

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$
 rank =2
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 rank =3

$$rank(\mathbf{A}) < rank(\mathbf{A}|\mathbf{b})$$

Linear System Ax = B

$$A x = 0$$

Always consistent

$$rank(A) = n$$

unique solution $x = 0$

Infinitely many solution n-r parameters

$$\mathbf{A} = \left[a_{ij}\right]_{\mathbf{m} \times \mathbf{n}}$$

m equations

n unknowns

$$A \quad x = b$$

$$rank(\mathbf{A}) = rank(\mathbf{A}|\mathbf{b})$$

: Consistent

$$rank(A) = n$$

unique solution $x \neq 0$

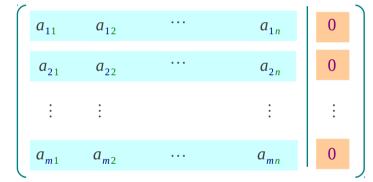
Infinitely many solution n - r parameters

: Inconsistent

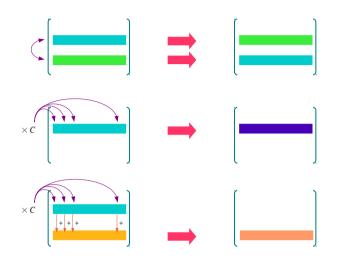
Augmented Matrix

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Augmented matrix of a homogeneous system



Reduced Row Echelon Form

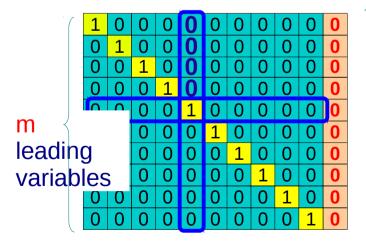


Elementary row operations do <u>not alter</u> the zero column of a matrix

homogeneous system

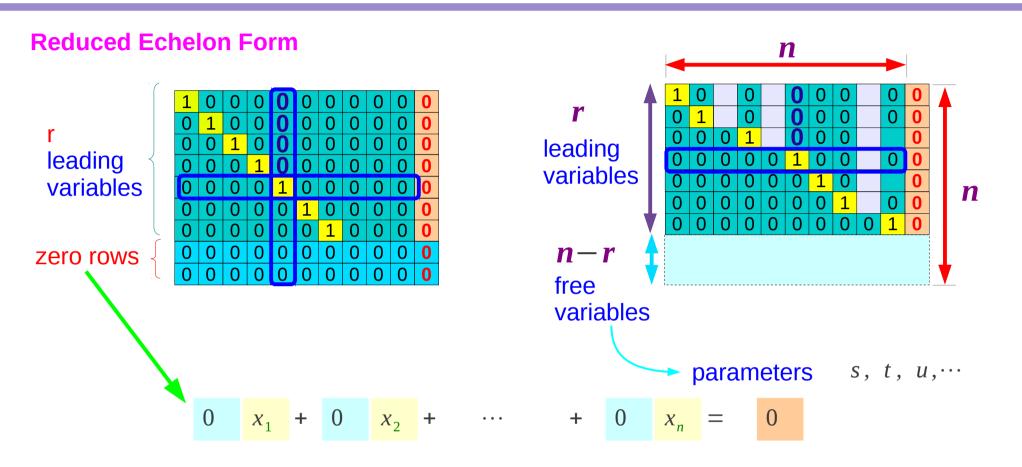
The augmented zero column is preserved in the reduced row echelon form

Reduced Echelon Form



zero rows

Free Variable Theorem



A homogeneous linear system with *n* unknowns

If the reduced row echelon form of its augmented matrix has

r non-zero rows \longrightarrow n-r free variables

infinitely many solutions

Free Variable Theorem Example

Reduced Echelon Form

1	0	3	-1
0	1	-4	2
0	0	0	0

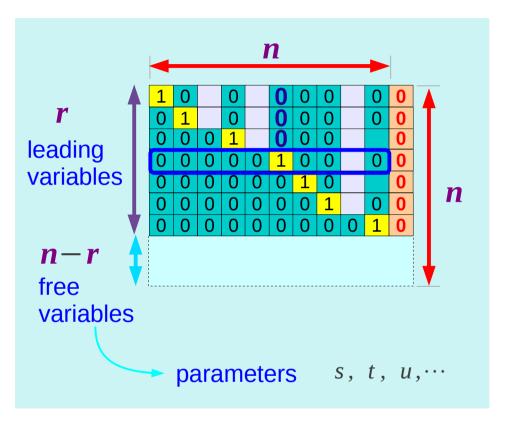
$$1(x_1) + 3 \cdot x_3 = -1 1(x_2) - 4 \cdot x_3 = 2$$

$$1(x_1) - 5(x_2) + 1(x_3) = 4$$

$$1(x_1) - 5(x_2) + 1(x_3) = 4$$

$$\begin{cases} x_1 = -1 - 3t \\ x_2 = 2 + 4t \\ x_3 = t \end{cases}$$
 free variable

$$\begin{cases} x_1 = 4 + 5 \cdot x_2 - 1 \cdot x_3 \\ x_2 = s & \leftarrow \text{ free variable} \\ x_3 = t & \leftarrow \text{ free variable} \end{cases}$$

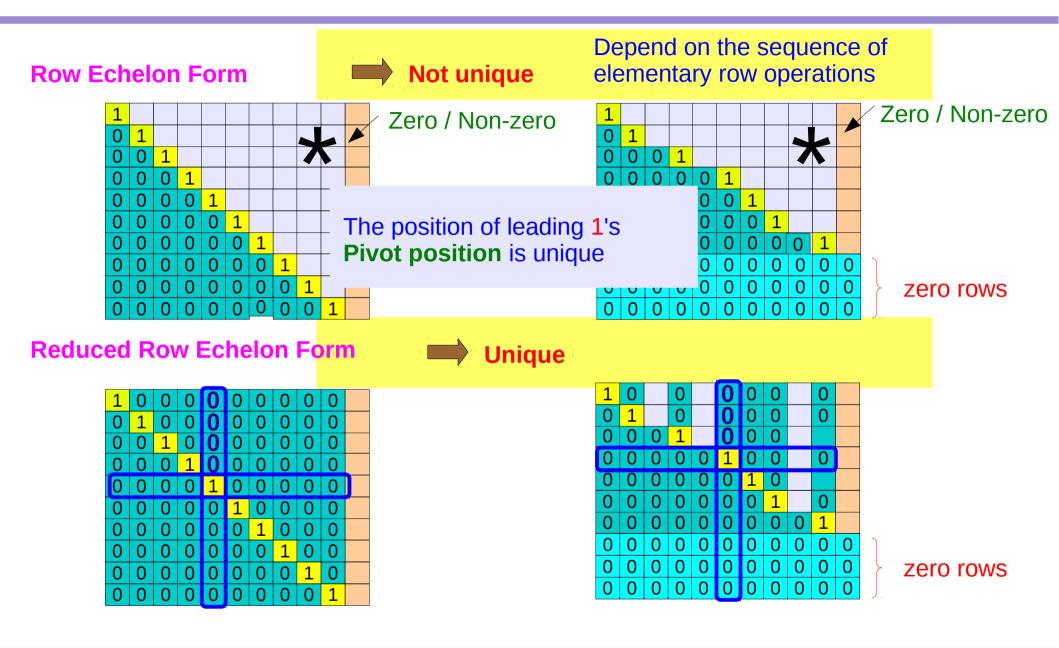


A homogeneous linear system with *n* unknowns

If the reduced row echelon form of its augmented matrix has

r non-zero rows \longrightarrow n-r free variables \longrightarrow infinitely many solutions

Pivot Positions



Pulse

References

- [1] http://en.wikipedia.org/
- [2] Anton & Busby, "Contemporary Linear Algebra"
- [3] Anton & Rorres, "Elementary Linear Algebra"