Random Sampling

Young W. Lim

2020-04-06 Mon

Outline

(1) Based on
(2) Random Sampling

- Data Vectors

Based on

"Understanding Statistics in the Behavioral Sciences" R. R. Pagano

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short: you are free to share and make derivative works of the file under the conditions that you appropriately attribute it, and that you distribute it only under a license compatible with this one.

Random Sample

- a sample selected from the population by a process that ensures
- each possible sample of a given size has an equal chance of being selected
- all the members of the population have an equal chance of being selected into the sample

Replacement

- Sampling with replacement each member of the sample is returned to the population before the next member is selected
- Sampling without replacement the members of the sample are not returned to the population before subsequent members are selected

A priori and a posterior Probabilities

- a priori probability

$$
P(A)=\frac{\text { Number of events classifiable as } A}{\text { Total number of possible events }}
$$

- a posteriori probability

$$
P(A)=\frac{\text { Number of times } A \text { occurred }}{\text { Total number of occurrences }}
$$

A priori probability

- a probability that is derived purely by deductive reasoning
- One way of deriving a priori probabilities is the principle of indifference
- if there are N mutually exclusive and collectively exhaustive events and if they are equally likely, then the probability of a given event occurring is $1 / \mathrm{N}$.
- Similarly the probability of one of a given collection of K events is K / N.

A posteriori probability

- the conditional probability that is assigned after the relevant evidence or background is taken into account
- the posterior probability distribution is the probability distribution of an unknown quantity, treated as a random variable, conditional on the evidence obtained from an experiment
- "Posterior", in this context, means after taking into account the relevant evidence related to the particular case being examined.

Probability of occurrence of A or B

- the probability of occurrence of A plus the probability of occurrence of B minus the probability of occurrence of both A and B
- addition rule for two events - general equation $p(A$ or $B)=p(A)+p(B)-p(A$ and $B)$

Mutually exclusive events

- if both cannot occur together
- if the occurrence of one percludes the occurrence of the other
- addition rule when A and B are mutually exclusive $p(A$ or $B)=p(A)+p(B)$

Exhaustive

- a set of events is exclusive if the set includes all of the possible events
- when events are exhaustive and mutually exclusive $p(A)+p(B)+\ldots+p(Z)=1.00$

Exhaustive Events

- When a sample space is distributed down into some mutually exclusive events such that their union forms the sample space itself, then such events are called exhaustive events.
- When two or more events form the sample space collectively then it is known as collectively exhaustive events.
- When at least one of the events occur compulsorily from the list of events, then it is also known as exhaustive events.
https://www.engineeringintro.com/statistics/what-is-probability/exhaustive-events,

Exhaustive Event Examples

- Sample Space $S=1,2,3,4,5$
- event $X=1,2$
- event $Y=3,4$
- event $Z=5$
- events X, Y, Z are mutually exclusive events
- Sample Space $S=1,2,3,4,5$
- event $X=1,2,3$
- event $Y=1,3,4$
- event $Z=5$
- events X, Y, Z are collectively exhaustive events
https://www.engineeringintro.com/statistics/what-is-probability/exhaustive-events

Multiplication rule

- the probability of occurrence of both A and B is equal to the probability of occurrence of A times the probability of occurrence of B given A has occurred
- multiplication rule with two events - general case $p(A$ and $B)=p(A) p(B \mid A)$
- multiplication rule with two events - mutually exclusive events $p(A$ and $B)=0$
- multiplication rule with two events - independent events $p(A$ and $B)=p(A) p(B \mid A)=p(A) p(B)$

Independent

- two events are independent if the occurrence of one has no effect on the probability of occurrence of the other

Probability and continuous variables

- probability of A with a continuous variable

$$
p(A)=\frac{\text { Area under the curve corresponding to } A}{\text { Total area under the curve }}
$$

000

000

