Laurent Series and z-Transform - Geometric Series

Double Pole Examples B

7	\wedge	1	0	\cap		1
	u		റ		/	

Copyright (c) 2016 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

2 formulas of z

$$\frac{3}{2} \frac{-1}{(2-0.5)(2-2)} = \left(\frac{1}{\xi-0.5} - \frac{1}{\xi-2} \right)$$

$$\frac{3}{3} - \frac{(5-5)(5-0.5)}{2}$$

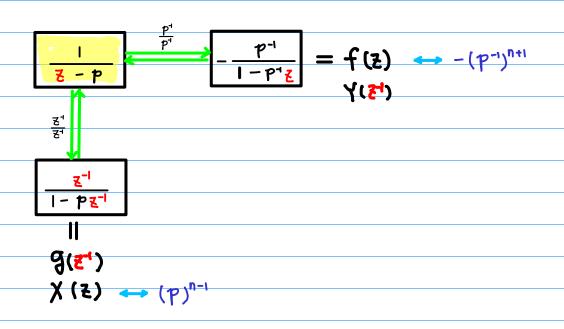
$$\frac{3}{3} \frac{-1}{(2-0.5)(5-2)} = \frac{3}{3} \frac{3}{2} \left(\frac{\xi-0.5}{1} - \frac{\xi-2}{1} \right)$$

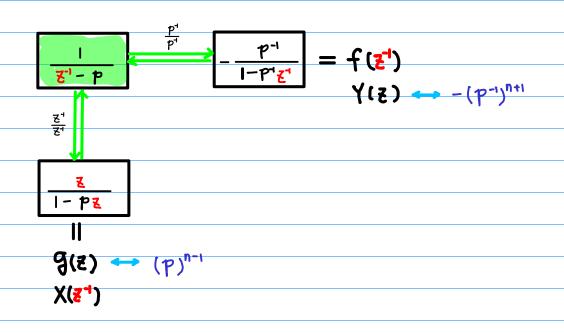
$$\frac{\xi^{-1}}{\xi^{-0.5}} - \frac{1}{\xi^{-2}}$$

$$\frac{3}{2} \frac{-1}{(2^{\frac{1}{2}} - 0.5)(2^{\frac{1}{2}} - 2)} = \frac{3}{2} \frac{2}{3} \left(\frac{1}{2^{\frac{1}{2}} - 0.5} - \frac{1}{2^{\frac{1}{2}} - 2} \right) \\
= \left(\frac{2}{22^{\frac{1}{2}} - 1} - \frac{0.5}{0.52^{\frac{1}{2}} - 1} \right) \\
= \left(\frac{22}{2 - 2} - \frac{0.52}{0.5 - 2} \right) \\
= \left(\frac{-22}{2 - 2} + \frac{0.52}{2 - 0.5} \right) \\
= 2 \left(\frac{-2}{2 - 2} + \frac{0.52}{2 - 0.5} \right) \\
= 2 \left(\frac{-\frac{3}{2}}{(2 - 2)(2 - 0.5)} \right) \\
= \frac{3}{2} \frac{-2^{\frac{3}{2}}}{(2 - 2)(2 - 0.5)}$$

$$\frac{3}{2} \frac{-2^2}{(2-2)(2-0.5)} = \frac{3}{2} \frac{2}{3} \left(\frac{0.52}{(2-0.5)} - \frac{22}{(2-1)} \right)$$

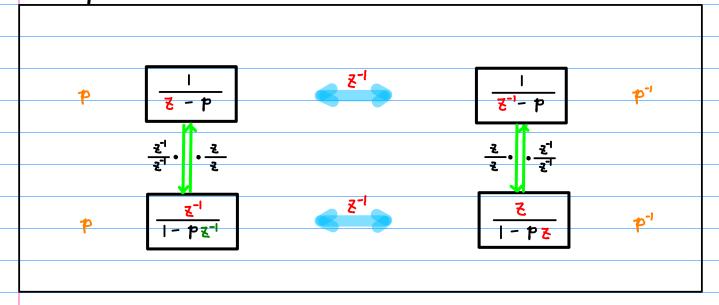
Laurent f(z), g(z): causal, $f(z^{-1})$, $g(z^{-1})$: canti-causal z- Trans X(z), Y(z): causal, $X(z^{-1})$. $Y(z^{-1})$: canti-causal

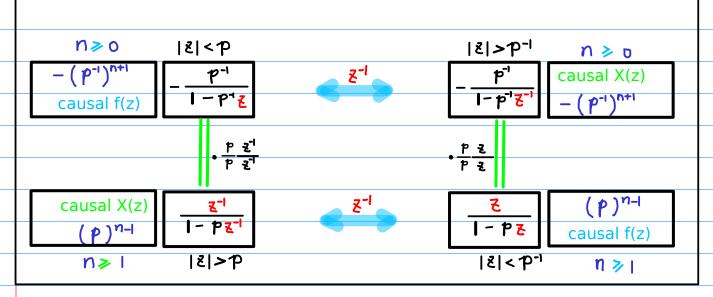




2 formulas of z: f(z), g(z)2 representations: f(z'), g(z')

* Simple Pale Forms





A) f(z) for |z|<p, g(z) for |z|<p- Lauvent S

Geometric Series Forms

$$f(z) = \frac{|z| < p}{|-p^{-1}|}$$

$$\frac{z}{|-pz|} = g(z)$$

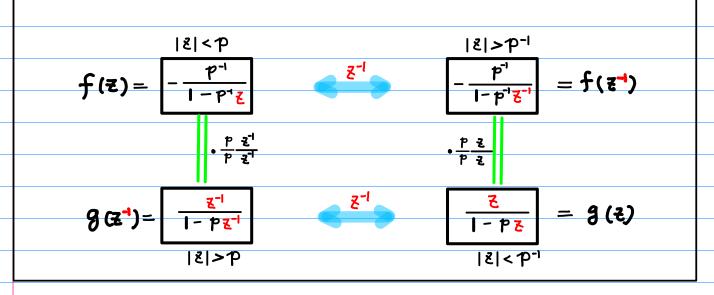
B f(21) for |8|>p1, g(21) for |8|>p

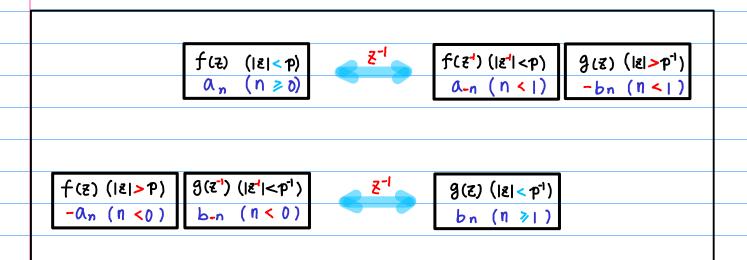
$$f(z) = \begin{bmatrix} |z|$$

$$f(z) = \begin{bmatrix} -\frac{p^{-1}}{1-p^{+}z} \end{bmatrix} = f(z^{-1})$$

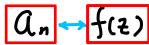
$$g(z^{-1}) = \frac{z^{-1}}{|z| > p}$$

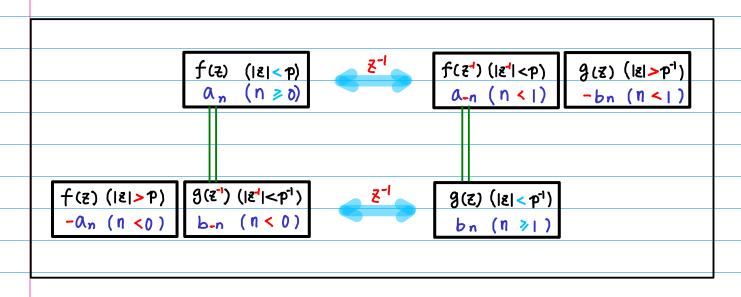
Laurent Series an f(z) bn = g(z)





Laurent Series using only an f(2)

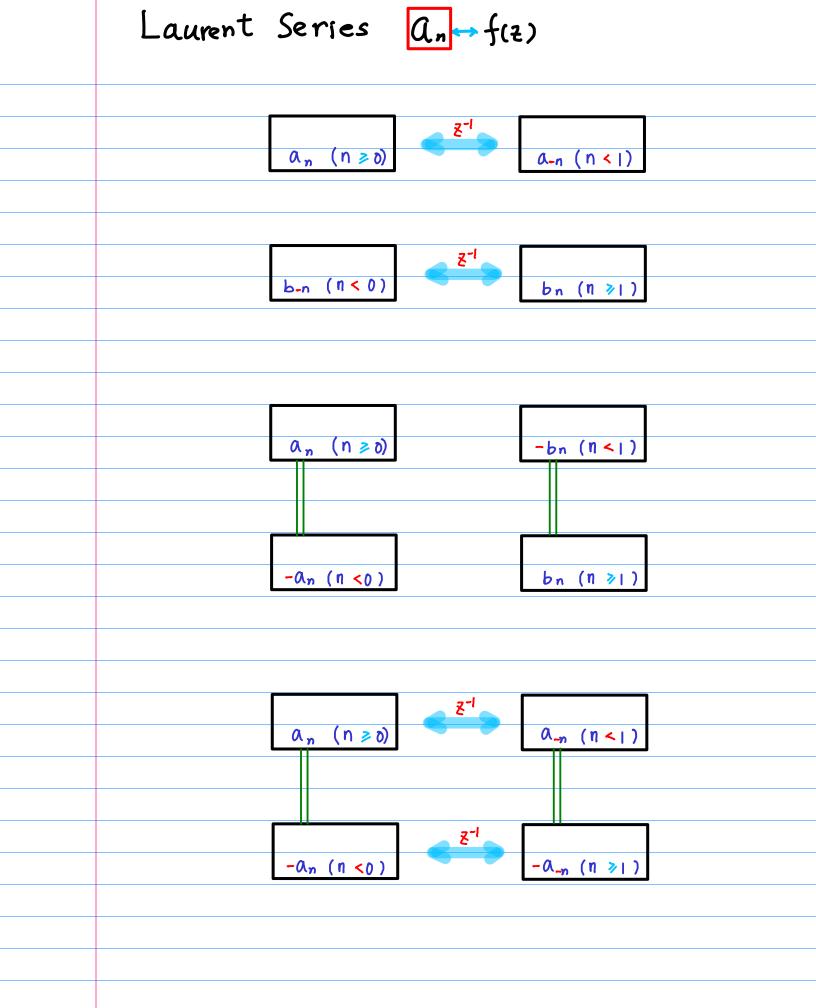




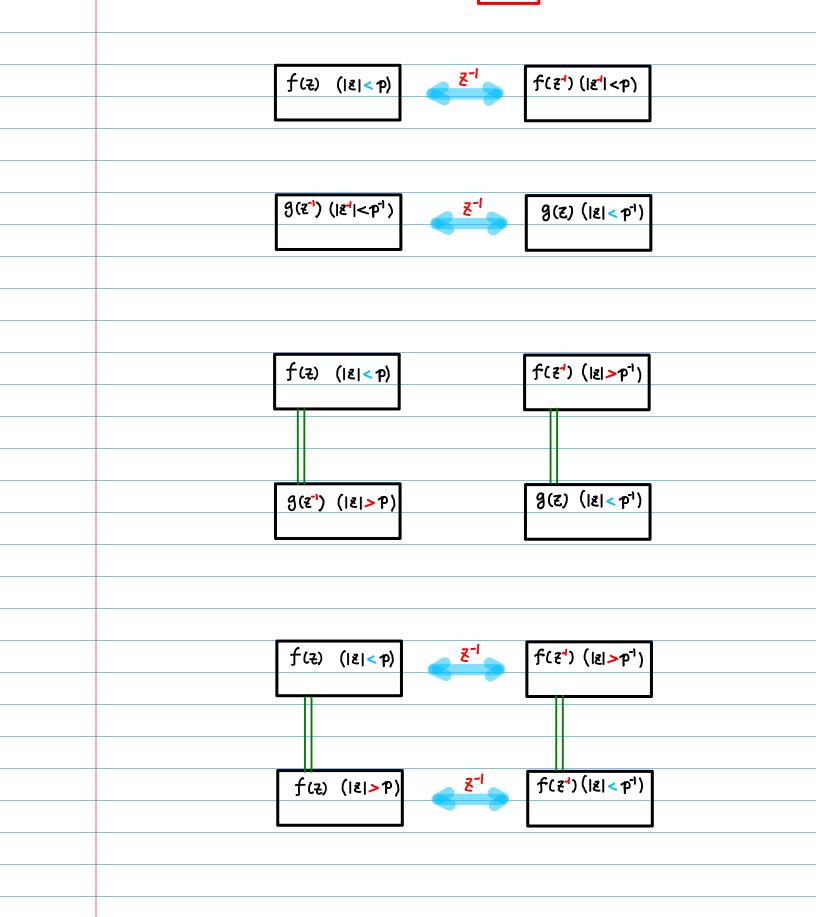
$$a_{-n} = -b_n$$
 $-a_{-n} = b_n$

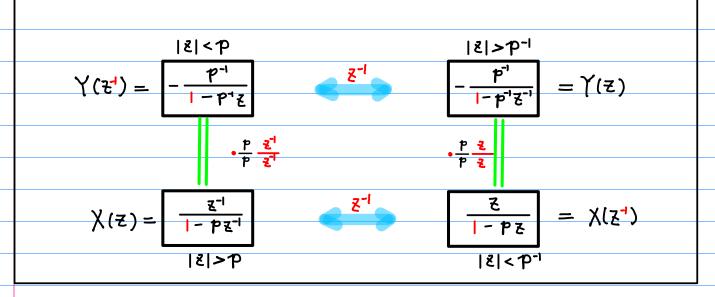
$$-a_{-n} = b_n$$

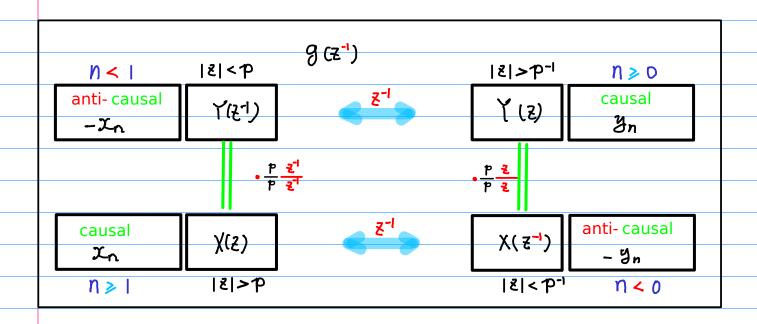




Laurent Series an f(2)







A) X(Z) for |E|>P, Y(Z) for |E|>P-1 Z-Transform

Geometric Series Forms

$$-\frac{p^{-1}}{1-p^{-1}z^{-1}} = (3)^{p^{-1}}$$

$$|\mathcal{E}| > P$$

$$X(z) = \frac{z^{-1}}{1 - pz^{-1}}$$

$$\frac{z}{1 - pz}$$

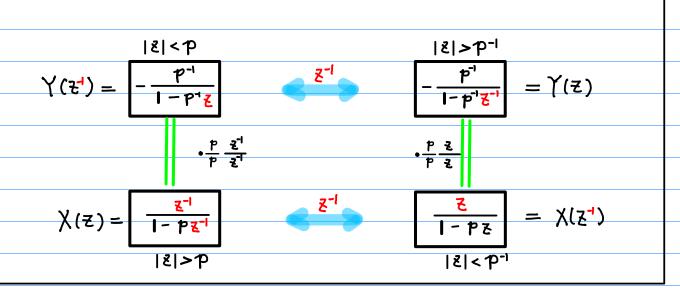
$$\chi(\mathbf{z}^{-1}) = \begin{bmatrix} -\frac{p^{-1}}{1-p^{-1}\xi^{-1}} & \frac{\xi^{-1}}{1-p^{-1}\xi^{-1}} & -\frac{p^{-1}}{1-p^{-1}\xi^{-1}} & -\frac{\chi(\mathbf{z})}{1-p^{-1}\xi^{-1}} \end{bmatrix} = \chi(\mathbf{z})$$

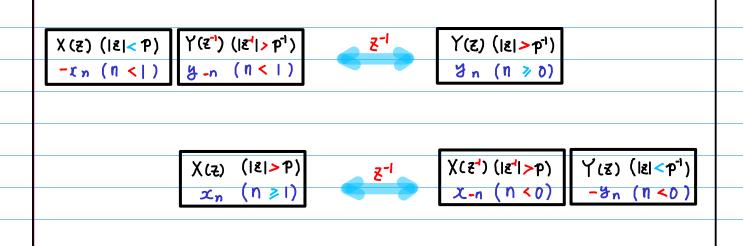
$$\chi(z) = \frac{z^{-1}}{1 - pz^{-1}}$$

$$|z| > p$$

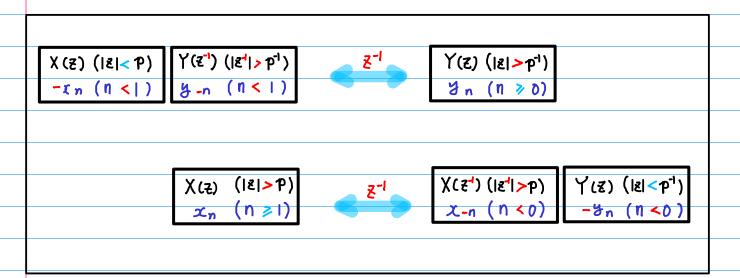
$$|z| < p^{-1}$$

$$|z| < p^{-1}$$

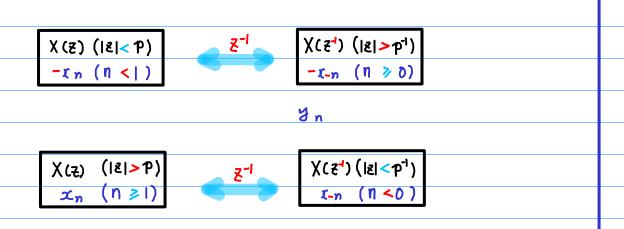




z-Transform using only $x_n \longleftrightarrow X(z)$



$$X - n = -y_n$$
 $-x_n = y_n$

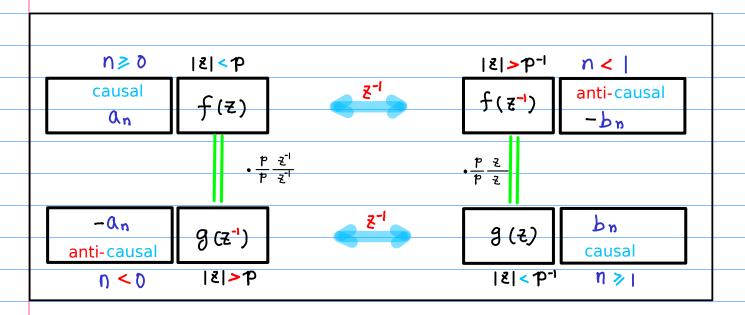


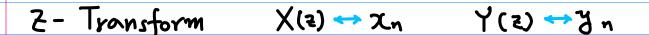
z - Transform xn→X(Z) yn (n ≯ 0) y-n (n<1) Z-n (n < 0) x_n (n ≥1) -x_n (n<1) yn (n > 0) -yn (n <0) x_n (n ≥1) -xn (n<1) -X-n (n ≥ d) x-n (n < 0) $x_n \quad (n \ge 1)$

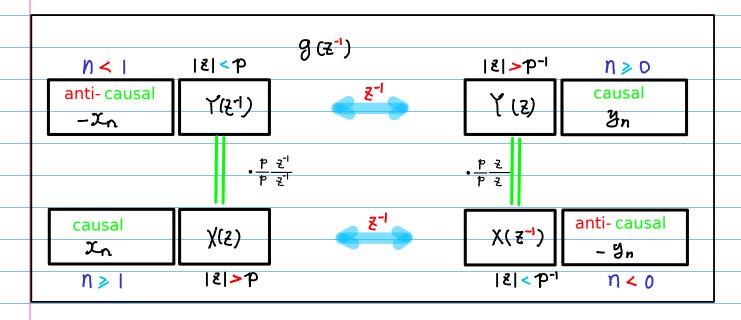
z - Transform $x_n \leftrightarrow X(z)$ Z-1 Y(z) (|z|>p⁻¹) Y(₹¹) (|&¹|>p¹) X(Z) (|E|>P) Z-1 X(₹¹) (|&²|>p) Y(Z) (|&|>p⁻¹) X(z) (|&| <p) X(Z) (|E|>P) Y(z) (|&|<p) 2-1 X(z') (|z|>p') X(Z) (|&| <p) X(Z) (|&|>P) X(z²) (|z|<p)

Laurent Series & Z-Transform (1)

-aurent Series $a_n \rightarrow f(z)$ $b_n \rightarrow g(z)$

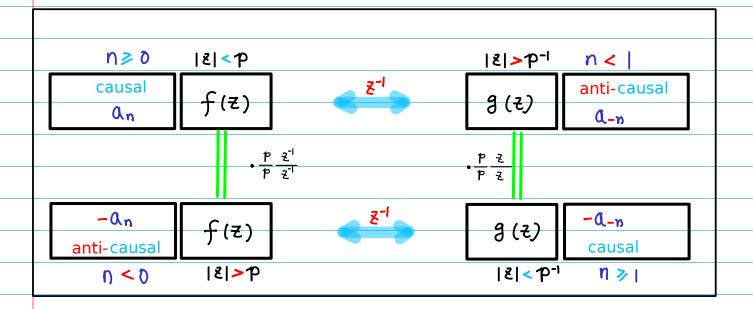




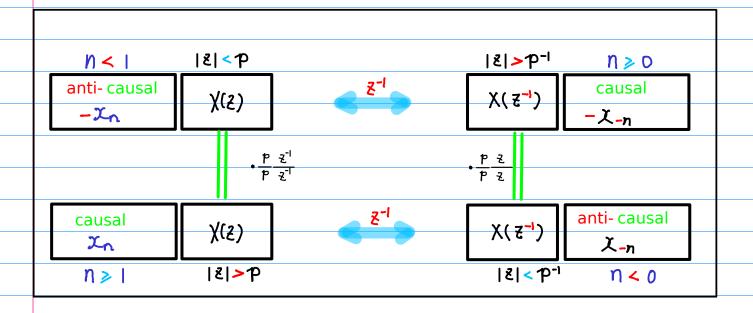


Laurent Series & Z-Transform (2)

Laurent Series an f(2)



Z- Transform X(2) → Xn



$$\begin{array}{c} \text{causal } f(z) \text{ (181$$

-2ⁿ

anti-causal g(z) (|z|>p^1)
$$f(z^1) \longleftrightarrow -bn \quad (n < 1)$$

$$p(z) \longleftrightarrow bn \quad (n \ge 1)$$

$$|z|>p^{-1} \quad |n < |$$

$$-(p^1 + p^2 z^1 + p^2 z^2 + \cdots) = \sum_{n=0}^{\infty} -(p)^{n-1} z^n \quad -\frac{p^1}{1 - p^2 z^2} \quad |n < |$$

$$|z|>p^{-1} \quad |n < |$$

$$-\frac{p^1}{1 - p^2 z^2} \quad |n < |$$

$$|z|>p^{-1} \quad |n < |$$

$$|z|

$$|z|>p^{-1} \quad |n < |$$

$$|z|>p^{-1} \quad |n < |$$

$$|z|

$$|z|>p^{-1} \quad |n < |$$

$$|z|

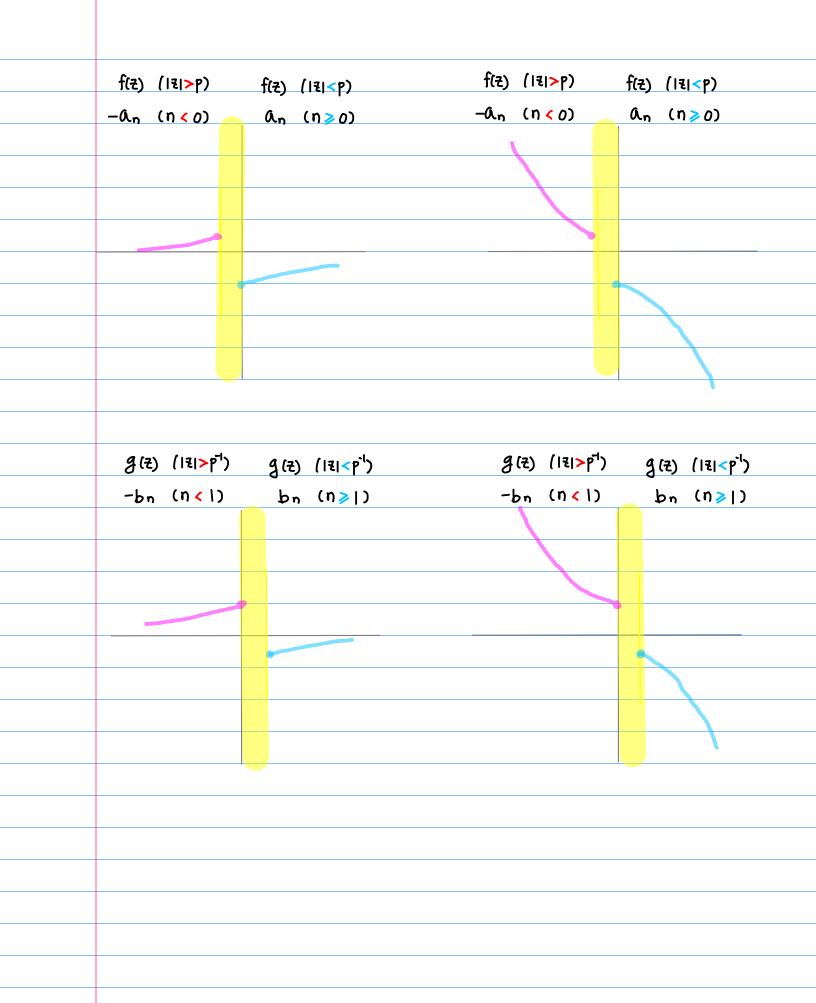
$$|z|

$$|z|>p^{-1} \quad |n < |$$

$$|z|

$$|z|>p^{-1} \quad |n < |$$

$$|z|>p^{-1} \quad |n <$$



causal
$$f(z)$$

$$f(z) \leftrightarrow a_n \quad (n \ge 0)$$

$$f(z^i) \leftrightarrow a_n \quad (n < 1)$$

$$|z| < p$$

$$|z| > p^{-1} \quad (p^i)^{n+i}z^i + p^iz^i + p^iz^i + \cdots) = \sum_{n=0}^{\infty} -(p^i)^{n+i}z^n \quad n \ge 0$$

$$|z| > p^{-1} \quad |z|$$

$$|z| > p^{-1}$$

causal g(z)

anti-causal g(2)

f(z') (૨ > p')	f(z)(z <p)< th=""><th>f(z') (₹ >p')</th><th>f(z) (z <p)< th=""></p)<></th></p)<>	f(z') (₹ >p')	f(z) (z <p)< th=""></p)<>
۵-n (n<1)		۵-n (n < ۱)	A _n (n≥0)
		•	
	g (z) (z <p<sup>-1)</p<sup>	g(z') (= >p)	g (Z) (Z <p-1)< td=""></p-1)<>
b-n (n<0)	b _n (n≥)	b-n (n < 0)	bn (n≥)

\mathbf{x}_{n}		A -n	
yn		b-n	
causal		anti-causal	
n≥o	- (p-1, p-2, p-3,)		
n≥ I	(p-2, p-3, p-4, ···)	U < 0	
anti-causal		causal	
n<	- (p-1, p-2, p-3,)	n≥o	
U < 0	(p ⁻² , p ⁻³ , p ⁻⁴ , ···)	n≥ I	

getting anti-causal sequence

$$\frac{1}{\xi^{-1} - p} - \frac{p^{-1}}{1 - p^{+}\xi^{-1}} = f(\xi^{-1}) + \frac{p^{-1}}{1 - p^{+}\xi^{-1}}$$

$$\frac{\xi^{-1}}{\xi^{-1}} - \frac{p^{-1}}{1 - p^{+}\xi^{-1}} = f(\xi^{-1}) + \frac{p^{-1}}{1 - p^{+}\xi^{-1}}$$

$$\frac{\xi^{-1}}{\xi^{-1}} - \frac{\xi^{-1}}{1 - p^{+}\xi^{-1}} = f(\xi^{-1}) + \frac{p^{-1}}{1 - p^{+}\xi^{-1}}$$

$$\frac{\xi^{-1}}{\xi^{-1}} - \frac{\xi^{-1}}{1 - p^{+}\xi^{-1}} = f(\xi^{-1}) + \frac{p^{-1}}{1 - p^{+}\xi^{-1}}$$

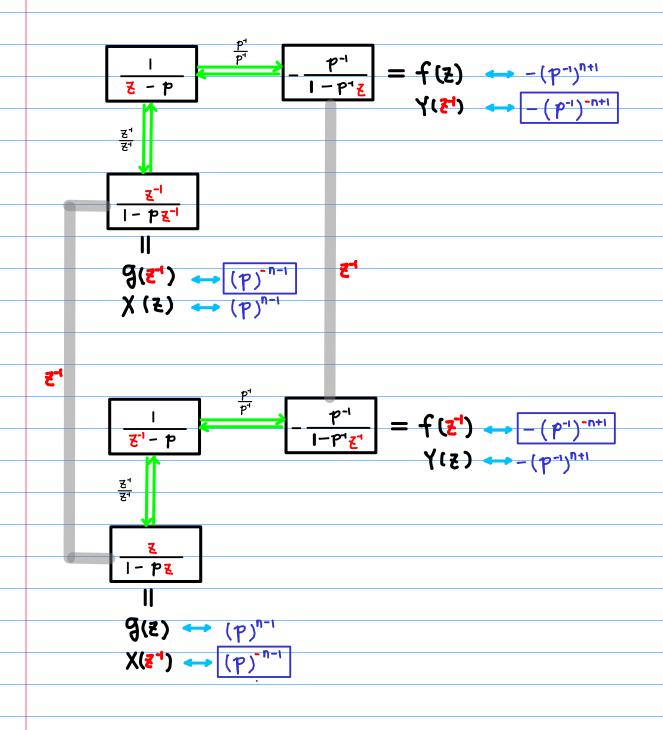
$$\frac{\xi^{-1}}{\xi^{-1}} - \frac{\xi^{-1}}{1 - p^{+}\xi^{-1}} = f(\xi^{-1}) + \frac{p^{-1}}{1 - p^{+}\xi^{-1}}$$

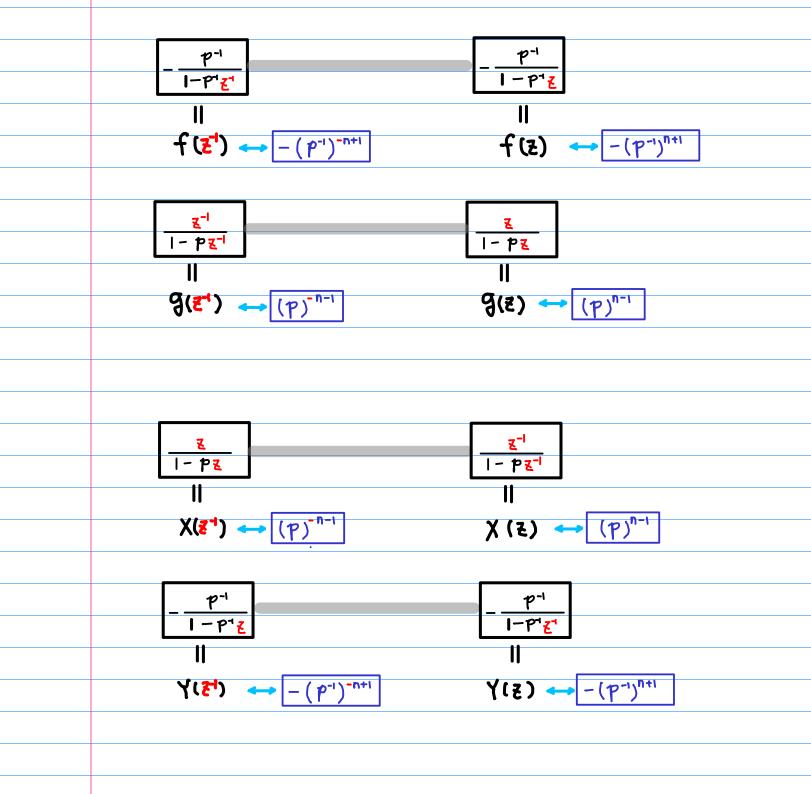
$$\frac{\xi^{-1}}{\xi^{-1}} - \frac{\xi^{-1}}{1 - p^{+}\xi^{-1}} = f(\xi^{-1}) + \frac{p^{-1}}{1 - p^{+}\xi^{-1}}$$

$$\frac{\xi^{-1}}{\xi^{-1}} - \frac{\xi^{-1}}{1 - p^{+}\xi^{-1}} = f(\xi^{-1}) + \frac{p^{-1}}{1 - p^{+}\xi^{-1}}$$

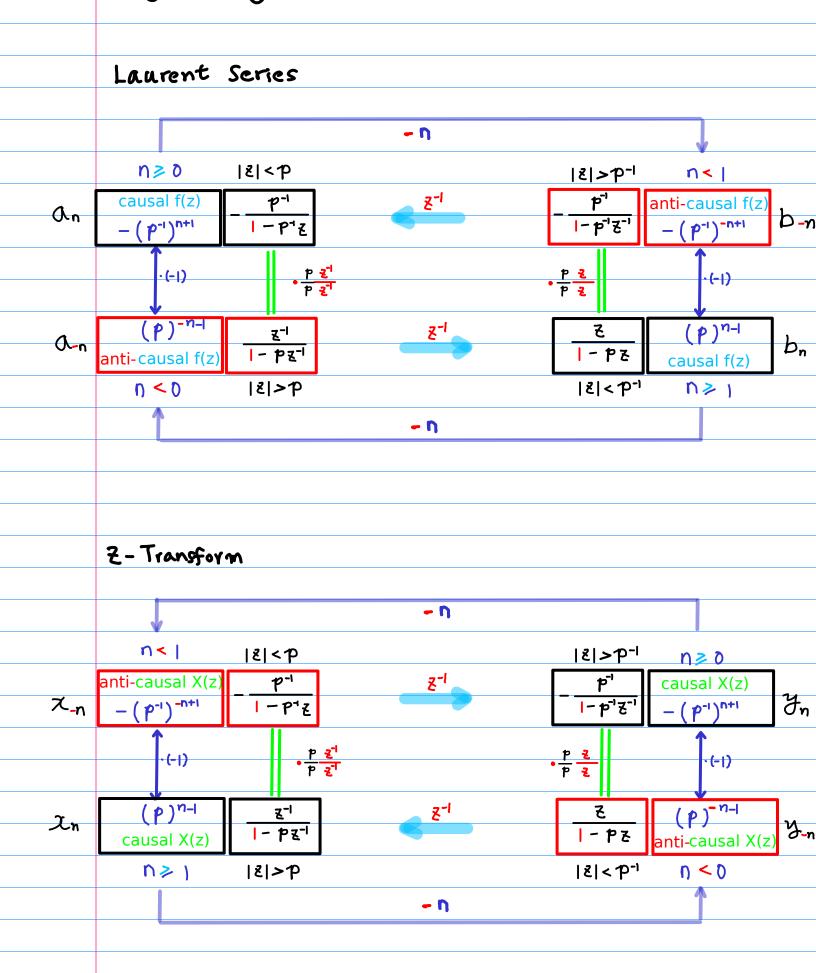
$$\frac{\xi^{-1}}{\xi^{-1}} - \frac{\xi^{-1}}{1 - p^{+}\xi^{-1}} = f(\xi^{-1}) + \frac{p^{-1}}{1 - p^{+}\xi^{-1}}$$

$$\frac{\xi^{-1}}{\xi^{-1}} - \frac{\xi^{-1}}{1 - p^{+}\xi^{-1}} = f(\xi^{-1}) + \frac{p^{-1}}{1 - p^{-}\xi^{-1}} = f(\xi^{$$





getting anti-causal sequence



- $z \rightarrow z^{-1}$ to get causal f(z), |z| < a
- $f(z) \leftrightarrow a_n$ |z| < a, n > 0,1③ $n \rightarrow -n$ to get anti-causal n < 0,1

$$2 \frac{-052^2}{(2-1)(2-0.5)}$$

$$-\frac{1}{1-\xi}+\frac{0.5}{1-0.5\xi}$$

$$+\frac{z}{1-z}-\frac{z}{1-2z}$$

$$\chi(z)$$
 $|z| < 1$ anti-causal

$$X(z)$$
 $|z| < 0.5$ anti-causal

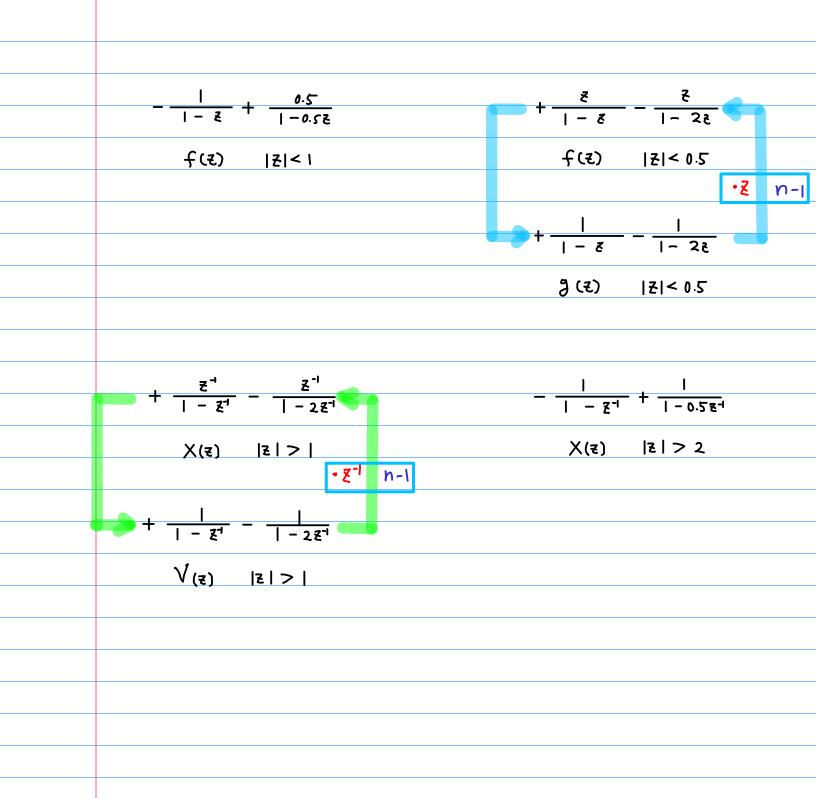
$$+\frac{z^{-1}}{1-z^{-1}}-\frac{z^{-1}}{1-2z^{-1}}$$

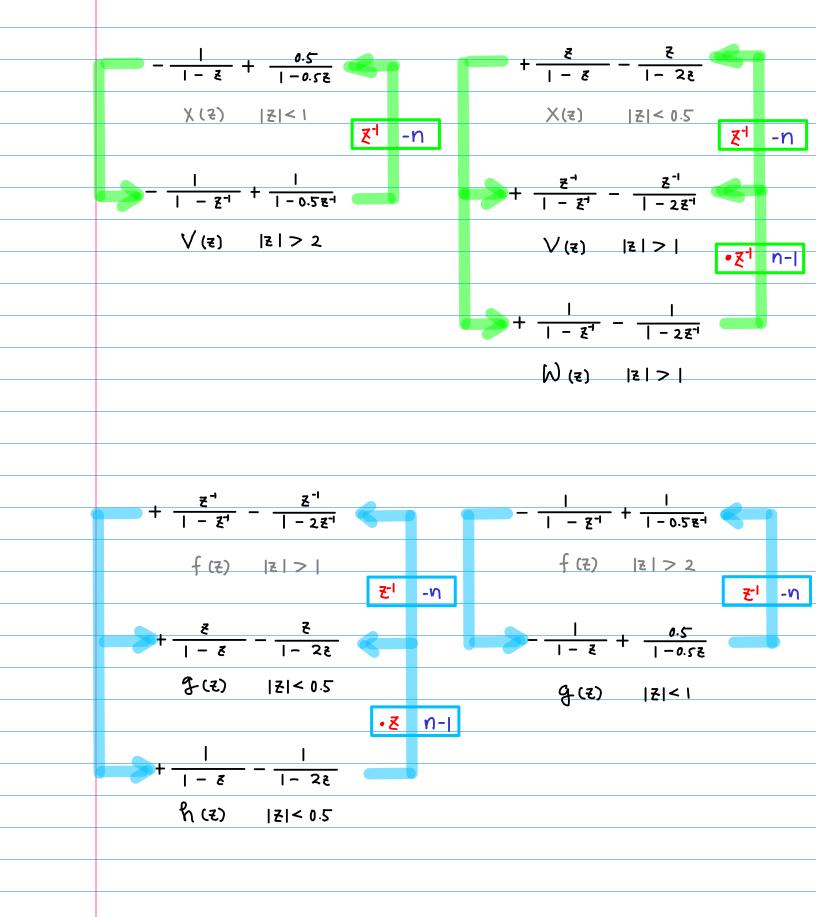
$$-\frac{1-\Sigma_{-1}}{1}+\frac{1-0.2\,\varepsilon_{-1}}{1}$$

$$f(z)$$
 $|z| > |$ anti-causal

$$f(z)$$
 $|z| > 2$ anti-causal

$$X(z)$$
 $|z| > 2$ causal





$$\frac{3}{2} \frac{-1}{(2-0.5)(2-2)} = \left(\frac{1}{\xi-0.5} - \frac{1}{\xi-2}\right)$$

$$\frac{f(2)}{|z| > 2} \qquad \frac{f(2)}{|z| > 2} \qquad \frac{g^{-1}}{|z| - 0.5g^{-1}} - \frac{g^{-1}}{|z| - 2g^{-1}} \qquad + 2^{n+1} - (\frac{1}{2})^{n+1} \qquad (n < 0)$$

$$\frac{\chi(\xi)}{|\xi| > 2} \qquad \chi(\xi) = \frac{\xi^{-1}}{|-0.5\xi^{-1}|} - \frac{\xi^{-1}}{|-2\xi^{-1}|} + (\frac{1}{2})^{n-1} - 2^{n-1} \qquad (n > 1)$$

$$\frac{f(2)}{|z| > 2} \qquad f(z) = \frac{0.5}{|-0.5z^{-1}|} - \frac{2}{|-2z^{-1}|} + 2^{n_1} - (\frac{1}{2})^{n_{-1}} \qquad (n < 1)$$

$$|\xi| > 2 \qquad \chi(\xi) = \frac{0.5}{1 - 0.5 \epsilon^{-1}} - \frac{2}{1 - 2 \epsilon^{-1}} + (\frac{1}{2})^{n+1} - 2^{n+1} \qquad (n > 0)$$

z-1 X(Z) Shifted Sequence

$$X(z) = \frac{|z| > 1}{|-z^{-1}|} - \frac{|z| > 2}{|-z^{2}|} \quad (|z| > 2)$$

$$a_{n} = |^{n} + 2^{n} \quad (n > 0)$$

$$a_{n-1} = \frac{z^{-1}}{|-z^{-1}|} - \frac{z^{-1}}{|-zz^{-1}|} \left(|z| > 2\right)$$

disjoint domains
$$N_1: n \ge 0$$
 $N_2: n < 0$
 $N_1: n \ge 1$ $N_2: n < 1$

$$\frac{1}{|-p^{-1}\xi|} \qquad N_{1}: \ n \geqslant 0$$

$$\frac{\xi}{N_{1}} \qquad N_{2}: \ n \geqslant 0$$

zf(z) Shifted Sequence

$$f(z) = (+1) \frac{1}{1-z} - \frac{1}{1-2z} \quad (|z| < 0.5)$$

$$a_n = 1^n - 2^n \quad (n \ge 0)$$

$$a_{n-1} = \frac{2}{|n-1|} - \frac{2}{|n-2|} - \frac{2}{|n-2|} \left(|2| < 0.5 \right)$$

Z-1f(Z-1) Shifted & Reflected Sequence

$$f(z) = \frac{1}{1-z} - \frac{1}{1-2z} \qquad (|z| < 0.5)$$

$$a_n = ||^n - 2^n \qquad (n \ge 0)$$

$$a_{n-1} = \frac{\xi}{|-\xi|} - \frac{\xi}{|-\lambda\xi|} \qquad (|\xi| < 0.5)$$

$$\mathbf{Z}^{-1}\mathbf{f}(\mathbf{Z}^{-1}) = \frac{\mathbf{Z}^{-1}}{|-\mathbf{Z}^{-1}|} - \frac{\mathbf{Z}^{-1}}{|-\mathbf{Z}^{-1}|} \left(|\mathbf{z}| > 2\right)$$

$$\mathbf{A}_{-\mathbf{n}-\mathbf{1}} = |\mathbf{n}+\mathbf{1}| - \left(\frac{1}{2}\right)^{\mathbf{n}+\mathbf{1}} \quad (\mathbf{n} < 0)$$

$$\mathbf{A}_{-(\mathbf{n}+\mathbf{1})}$$

$$X(\mathfrak{z}) = \frac{1}{1-\mathfrak{z}^{-1}} - \frac{1}{1-2\mathfrak{z}^{-1}} \quad (|\mathfrak{z}| > 2)$$

$$a_{\mathfrak{n}} = 1^{\mathfrak{n}} - 2^{\mathfrak{n}} \quad (n \ge 0)$$

$$\mathbf{a_{n-i}} = \frac{\mathbf{z}^{-1}}{|-\mathbf{z}^{-1}|} - \frac{\mathbf{z}^{-1}}{|-\mathbf{z}\mathbf{z}^{-1}|} \left(|\mathbf{z}| > 2\right)$$

$$\mathbf{a}_{-n-1} = \frac{\xi}{1-\xi} - \frac{\xi}{1-2\xi} \quad (|\xi| < 0.5)$$

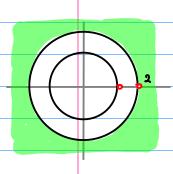
$$\mathbf{a}_{-(n+1)} = |n+1| - \left(\frac{1}{2}\right)^{n+1} \quad (n < 0)$$

Causal
$$f(z)$$
 $X(z)$ $|z| < |z| > 2$

$$|z| < | |z| < 2$$

$$f(z) = (-1) \frac{1}{|-z|} + \frac{0.5}{|-0.5|} (|z| < |)$$

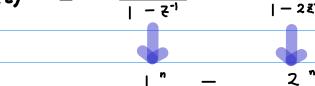
$$a_n = -1^{n+1} + (\frac{1}{2})^{n+1} \quad (n \ge 0)$$



$$X = \frac{z^{-1}}{1-z^{-1}} - \frac{z^{-1}}{1-2z^{-1}} \left(|z| > 2\right)$$

|2| > 2

(n > 0)



|2| > |

$$a_n = |^{n-1} - 2^{n-1} \quad (n > 1)$$

Causal
$$f(z)$$
 $X(z)$ $|z| < 0.5$ $|z| > 1$

$$2-A \frac{-052^2}{(2-1)(2-0.5)} = \left(-\frac{2}{(2-1)} + \frac{0.52}{(2-0.5)}\right)$$

$$f(z) = (+1)\frac{2}{1-z} - \frac{z}{1-2z} \quad (|z|<0.5)$$

$$|n - 2^{n} \quad (n > 0)$$

$$a_{n} = |n-1| - 2^{n-1} \quad (n > 1)$$

$$2-B \frac{-os \xi^2}{(z-1)(z-o.s)} = \left(-\frac{\xi}{(z-1)} + \frac{o.s z}{(z-o.s)}\right)$$

$$X(z) = -\frac{1}{1-z^{-1}} + \frac{o.s}{1-o.sz^{-1}} (|z| > 1)$$

$$a_n = -|^{n+1} + (\frac{1}{2})^{n+1} \qquad (n \ge 0)$$

|2| >1 |2| > 0.5

Anti-causal
$$f(z)$$
 $X(z)$ $|z| > 2$ $|z| < |$

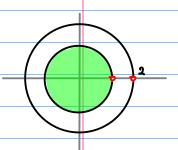
$$f(z) = \frac{z^{-1}}{|-z^{-1}|} - \frac{z^{-1}}{|-zz^{-1}|} \qquad (|z| > 2)$$

|2|>|

|2| < |

$$| n^n - 2^n \quad (n \ge 0)$$
 $| n^{-1} - 2^{n-1} \quad (n \ge 1)$

$$a_n = \lfloor \frac{n+1}{2} \rfloor^{n+1} \quad (n < 0)$$



$$X = -\frac{1}{1-2} + \frac{0.5}{1-0.52} (|z| < 1)$$

$$a_{n} = -1^{n+1} + (\frac{1}{2})^{n+1} \qquad (n \ge 0)$$

$$a_{n} = -1^{n-1} + 2^{n-1} \qquad (n < 1)$$

|2| < 2

Anti-causal
$$f(z)$$
 $\chi(z)$ $|z| > 0.5$

$$2-A \frac{-052^2}{(2-1)(2-0.5)} = \left(-\frac{2}{(2-1)} + \frac{0.52}{(2-0.5)}\right)$$

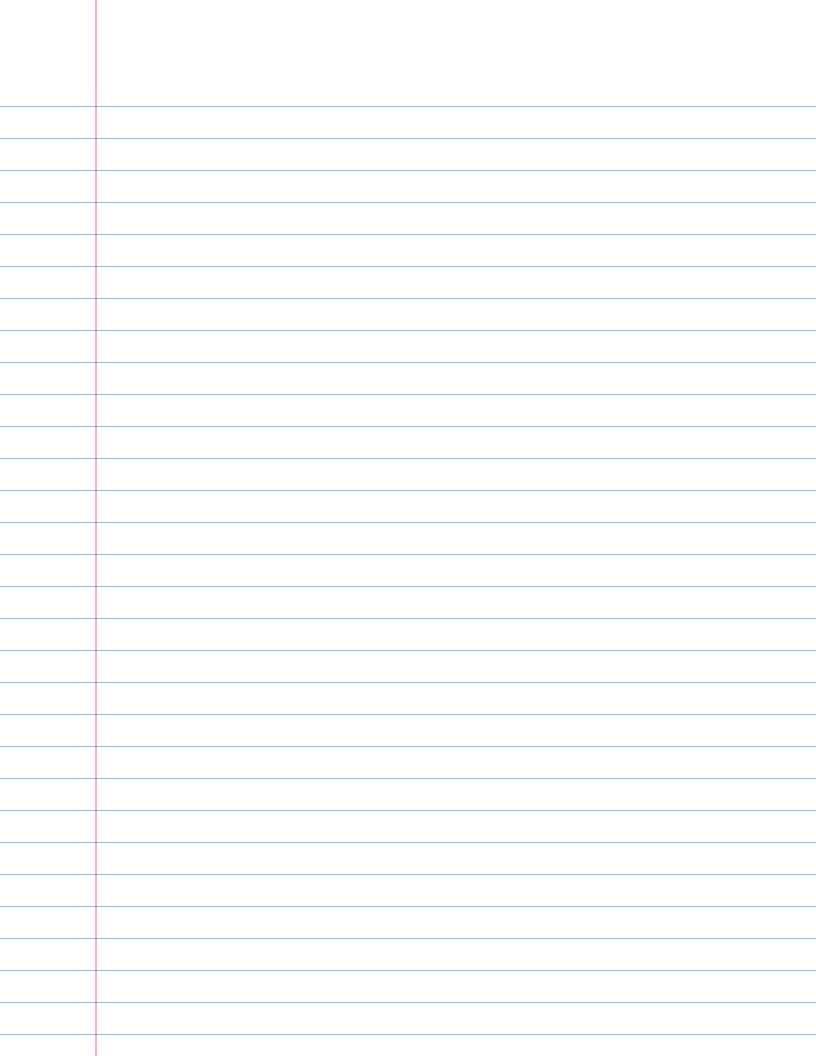
$$f(z) = (-1)\frac{1}{1-z^{-1}} + \frac{0.5}{1-0.5 z^{-1}} (|z| > 1)$$

$$\left(\frac{1}{2}\right)^{n+1}$$

$$2-B \frac{-os\xi^2}{(z-1)(z-o.s)} = \left(-\frac{\xi}{(z-1)} + \frac{o.s}{(z-1)}\right)$$

$$X (z) = \frac{z}{|-z|} - \frac{z}{|-z|} \left(|z| < 1\right)$$

$$a_n$$



$$\frac{3}{2} \frac{-1}{(2-0.5)(2-2)} = \left(\frac{1}{\xi-0.5} - \frac{1}{\xi-2}\right) = \frac{-2}{1-2\xi} + \frac{0.5}{1-0.5\xi}$$

$$\frac{f(\xi)}{1-(2\xi)} = \frac{\left(-2\right)}{1-\left(\frac{2}{2}\right)} + \frac{\left(\frac{1}{2}\right)}{1-\left(\frac{2}{2}\right)}$$

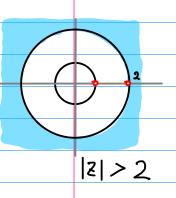
$$= -\sum_{n=0}^{\infty} (2)^{n+1} (\xi)^n + \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^{n+1} (\xi)^n$$

$$= -\sum_{n=0}^{\infty} (2)^{n+1} \xi^n + \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^{n+1} \xi^n$$

$$a_n =$$

$$(n > 0)$$
 $a_n = -2^{n+1} + (\frac{1}{2})^{n+1}$

$$\frac{3}{2} \frac{-1}{(2-0.5)(2-2)} = \left(\frac{1}{\xi-0.5} - \frac{1}{\xi-2}\right) = \frac{\xi^{-1}}{1-0.5\xi^{-1}} - \frac{\xi^{-1}}{1-2\xi^{-1}}$$



$$\frac{f(z)}{f(z)} = \frac{\left(\frac{1}{z}\right)}{|-\left(\frac{1}{2z}\right)} - \frac{\left(\frac{1}{z}\right)}{|-\left(\frac{3}{z}\right)} \neq$$

$$= \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \left(\frac{1}{z}\right)^{n+1} - \sum_{n=0}^{\infty} \left(2\right)^n \left(\frac{1}{z}\right)^{n+1}$$

$$= \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^{n-1} z^{-n} - \sum_{n=1}^{\infty} \left(2\right)^{n-1} z^{-n}$$

$$= \sum_{n=-1}^{-\infty} (2)^{n+1} \, \xi^n - \sum_{n=-1}^{-\infty} (\frac{1}{2})^{n+1} \, \xi^n$$

$$a_n$$

$$\begin{array}{ccc}
\boxed{ & \frac{3}{2} \frac{-1}{(2-0.5)(2-2)} = \boxed{\chi(2)} & |z| < 0.5 & |z| > 2 \\
& \text{anticausal} & \text{causal} & \text{causal}
\end{array}$$

$$|z| < 0.5$$
 $|z| > 2$

anticausal causal

$$\frac{3}{2} \frac{-1}{(2-0.5)(2-2)} = \left(\frac{1}{\xi-0.5} - \frac{1}{\xi-2}\right) = \frac{-2}{1-2\xi} + \frac{0.5}{1-0.5\xi}$$

$$X(\overline{z}) = \frac{(-2)}{1 - (2\overline{z})} + \frac{(\frac{1}{2})}{1 - (\frac{2}{2})}$$

$$= -\sum_{n=0}^{\infty} (2)^{n+i} (\overline{z})^n + \sum_{n=0}^{\infty} (\frac{1}{2})^{n+i} (\overline{z})^n$$

$$= -\sum_{n=0}^{\infty} (2)^{n+i} \overline{z}^n + \sum_{n=0}^{\infty} (\frac{1}{2})^{n+i} \overline{z}^n$$

$$= -\sum_{n=0}^{-\infty} \left(\frac{1}{2}\right)^{n-1} \xi^{-n} + \sum_{n=0}^{-\infty} \left(2\right)^{n-1} \xi^{-n}$$

$$(n \le 0)$$
 $a_n = -(\frac{1}{2})^{n-1} + 2^{n-1}$

$$\frac{3}{2} \frac{-1}{(2-05)(2-2)} = \left(\frac{1}{\xi-0.5} - \frac{1}{\xi-2}\right) = \frac{\xi^{-1}}{1-0.5\xi^{-1}} - \frac{\xi^{-1}}{1-2\xi^{-1}}$$

$$(n > 0)$$
 $a_n = (\frac{1}{2})^{n-1} - (2)^{n-1}$

$$(2)-\triangle \frac{3}{2}\frac{-\xi^{2}}{(2-2)(2-0.5)} = \int (3) \frac{|\xi| < 0.5}{\text{causal}} \frac{|\xi| > 2}{\text{anticausal}}$$

$$\frac{3}{2} \frac{-2^{2}}{(2-2)(2-0.5)} = \left(\frac{0.52}{(2-0.5)} - \frac{22}{(2-1)}\right) = -\frac{2}{1-22} + \frac{2}{1-0.52}$$

$$\frac{1}{|z| < 0.5} + \frac{(z)}{|-(2z)|} + \frac{(z)}{|-(\frac{z}{2})|} \neq$$

$$= -\sum_{n=0}^{\infty} (2)^n (z)^{n+1} + \sum_{n=0}^{\infty} (\frac{1}{2})^n (z)^{n+1}$$

$$= -\sum_{n=1}^{\infty} (2)^{n-1} z^n + \sum_{n=1}^{\infty} (\frac{1}{2})^{n-1} z^n$$

$$(n > 0) \qquad \alpha_n = -2^{n-1} + \left(\frac{1}{2}\right)^{n-1}$$

$$\frac{3}{2} \frac{-2^{2}}{(2-2)(2-0.5)} = \left(\frac{0.52}{(2-0.5)} - \frac{22}{(2-1)}\right) = \frac{0.5}{1-0.52^{-1}} - \frac{2}{1-22^{-1}}$$

$$\frac{1}{|z| > 2} + \frac{\left(\frac{1}{z}\right)}{|-\left(\frac{1}{2}\right)|} - \frac{\left(\frac{1}{z}\right)}{|-\left(\frac{2}{z}\right)|} = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^{n+1} \left(\frac{1}{z}\right)^n - \sum_{n=0}^{\infty} \left(2\right)^{n+1} \left(\frac{1}{z}\right)^n = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^{n+1} \xi^{-n} - \sum_{n=0}^{\infty} \left(2\right)^{n+1} \xi^{-n} = \sum_{n=0}^{\infty} \left(2\right)^{n-1} \xi^n - \sum_{n=0}^{\infty} \left(2\right)^{n-1} \xi^n$$

$$(n \leq 0) \qquad \alpha_n = 2^{n-1} - \left(\frac{1}{2}\right)^{n-1}$$

(2)-(B)
$$\frac{3}{2}\frac{-\xi^2}{(2-2)(2-0.5)} = \chi(3)$$

$$|z| < 0.5$$
 $|z| > 2$ anticausal causal

$$\frac{3}{2} \frac{-2^{2}}{(2-2)(2-0.5)} = \left(\frac{0.52}{(2-0.5)} - \frac{22}{(2-1)}\right) = -\frac{2}{1-22} + \frac{2}{1-0.52}$$

$$\frac{3}{2} \frac{-22}{(2-2)(2-0.5)} = \left(\frac{0.52}{(2-0.5)} - \frac{22}{(2-2)}\right) = \frac{0.5}{1-0.52^{-1}} - \frac{2}{1-22^{-1}}$$

$$(n \geqslant 0) \qquad \alpha_n = \left(\frac{1}{2}\right)^{n+1} - 2^{n+1}$$

