Random Process Background

Young W Lim

Sept 25, 2023

Copyright (c) 2023 - 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.

Based on Probability, Random Variables and Random Signal Principles, P.Z. Peebles, Jr. and B. Shi

Outline

- Open Sets and Classes
 - Open Set
 - Class
- 2 Borel Sets
 - Measurable Space
 - Topological Space
 - Borel Sets
- Stochatic Process

Outline

- Open Sets and Classes
 - Open Set
 - Class
- 2 Borel Sets
 - Measurable Space
 - Topological Space
 - Borel Sets
- Stochatic Process

Open set examples

- The *circle* represents the set of points (x, y) satisfying $x^2 + y^2 = r^2$.
 - the circle set is its boundary set
- The *disk* represents the set of points (x, y) satisfying $x^2 + y^2 < r^2$.
 - The disk set is an open set
- the union of the circle and disk sets is a closed set.

Open set (1)

- an open set is a generalization of an open interval in the real line.
- a metric space is a set along with a distance defined between any two points
- in a metric space,
 an open set is a set that, along with every point P,
 contains all points that are sufficiently near to P
 - all points whose distance to P is less than some value depending on P

Open set (2)

- More generally, an open set is

 a member of a given collection of subsets of a given set,
 a collection that has the property of containing
 - every union of its members
 - every finite intersection of its members
 - the empty set
 - the whole set itself

Open set (2)

- A set in which such a collection is given is called a topological space, and the collection is called a topology.
- These conditions are very <u>loose</u>, and allow enormous flexibility in the choice of open sets.
- For example,
 - every subset can be open (the discrete topology), or
 - no subset can be open (the indiscrete topology) except
 - the space itself and
 - the empty set .

Open set (4)

- A set is a collection of distinct objects.
- Given a set A, we say that a is an element of A
 if a is one of the distinct objects in A,
 and we write a ∈ A to denote this
- Given two sets A and B, we say that A is a subset of B
 if every element of A is also an element of B
 write A ⊂ B to denote this.

https://ximera.osu.edu/mooculus/calculusE/continuityOfFunctionsOfSeveralVariables/digInOpenAnd

Open set (5) Open Balls

- We give these definitions in general, for when one is working in \mathbb{R}^n since they are really not all that different to define in \mathbb{R}^n than in \mathbb{R}^2
- An open ball $B_r(a)$ in \mathbb{R}^n <u>centered</u> at $a = (a_1, \dots a_n) \in \mathbb{R}^n$ with <u>radius</u> ris the set of all points $x = (x_1, \dots x_n) \in \mathbb{R}^n$ such that the distance between x and a is less than r
- In \mathbb{R}^2 an **open ball** is often called an **open disk**

https://ximera.osu.edu/mooculus/calculusE/continuityOfFunctionsOfSeveralVariables/digInOpenAndu

Open set (6) Interior points

- Suppose that $S \subseteq \mathbb{R}^n$.
- A point $p \in S$ is an interior point of S if there exists an open ball $B_r(p) \subseteq S$.
- Intuitively, p is an interior point of S if we can squeeze an entire open ball centered at p within S

https://ximera.osu.edu/mooculus/calculusE/continuityOfFunctionsOfSeveralVariables/digInOpenAnd

Open set (7) Boundary points

- A point p∈ Rⁿ is a boundary point of S if all open balls centered at p contain both points in S and points not in S.
- The **boundary** of S is the set ∂S that consists of all of the **boundary points** of S.

https://ximera.osu.edu/mooculus/calculus E/continuityOfFunctionsOfSeveralVariables/digInOpenAndreases(a) and the second of the

Open set (8) Open and Closed Sets

- A set $O \subseteq \mathbb{R}^n$ is **open** if every point in O is an interior point.
- A set $C \subseteq \mathbb{R}^n$ is closed if it contains all of its boundary points.

https://ximera.osu.edu/mooculus/calculusE/continuityOfFunctionsOfSeveralVariables/digInOpenAndOpenAn

Open set (8) Bounded and Unbounded

• A set S is **bounded** if there is an open ball $B_M(0)$ such that

$$S \subseteq B$$
.

- intuitively, this means that we can <u>enclose</u> all of the set *S* <u>within</u> a large enough ball centered at the origin.
- A set that is not bounded is called unbounded

https://ximera.osu.edu/mooculus/calculus E/continuity Of Functions Of Several Variables/dig In Open Andrews Continuity Of Functions Of Several Variables and Continuity Of Several Variables and Continuity

Topologically distinguishable points

- Intuitively, an open set provides a method to distinguish two points.
- <u>two</u> points in a topological space, there exists an open set
 - containing one point but
 - not containing the other (distinct) point
 - the two points are topologically distinguishable.

Metric spaces

- In this manner, one may speak of whether <u>two</u> points, or more generally <u>two</u> subsets, of a topological space are "near" without concretely <u>defining</u> a distance.
- Therefore, topological spaces may be seen as a generalization of spaces equipped with a notion of distance, which are called metric spaces.

The set of all real numbers

• In the set of all real numbers, one has the natural Euclidean metric; that is, a function which measures the distance between two real numbers: d(x,y) = |x-y|.

All points close to a real number x

- Therefore, given a real number x, one can speak of the set of all points <u>close</u> to that real number x; that is, within ε of x.
- In essence, points within ε of x
 approximate x to an accuracy of degree ε.
- Note that ε > 0 always,
 but as ε becomes smaller and smaller,
 one obtains points that approximate x
 to a higher and higher degree of accuracy.

The points within ε of x

- For example, if x = 0 and $\varepsilon = 1$, the points within ε of x are precisely the points of the interval (-1,1);
- However, with $\varepsilon = 0.5$, the points within ε of x are precisely the points of (-0.5, 0.5).
- Clearly, these points approximate x to a greater degree of accuracy than when $\varepsilon = 1$.

without a concrete Euclidean metric

- The previous examples shows, for the case x = 0, that one may **approximate** x to *higher* and *higher* degrees of accuracy by defining ε to be *smaller* and *smaller*.
- In particular, sets of the form $(-\varepsilon, \varepsilon)$ give us a lot of <u>information</u> about points close to x = 0.
- Thus, <u>rather than</u> speaking of a <u>concrete</u> <u>Euclidean metric</u>, one may <u>use</u> <u>sets</u> to <u>describe</u> points <u>close</u> to x.

Different collections of sets containing 0

 This innovative idea has far-reaching consequences; in particular, by defining

```
different collections of sets containing 0 (distinct from the sets (-\varepsilon, \varepsilon)), one may find different results regarding the distance between 0 and other real numbers.
```

A set for measuring distance

- For example, if we were to define R
 as the only such set for "measuring distance",
 all points are close to 0
- since there is only <u>one</u> possible degree of accuracy one may achieve in <u>approximating</u> 0: being a <u>member</u> of *R*.

The measure as a binary condition

- Thus, we find that in some sense, every real number is distance 0 away from 0.
- It may help in this case to think of the measure as being a binary condition:
 - all things in R are equally close to 0,
 - while any item that is <u>not</u> in R is <u>not close</u> to 0.

Family of sets (1)

- a collection F of subsets of a given set S is called a family of subsets of S, or a family of sets over S.
- More generally,
 a collection of any sets whatsoever is called
 a family of sets,
 set family, or
 a set system

 $https://en.wikipedia.org/wiki/Family_of_sets$

Family of sets (2)

- The term "collection" is used here because,
 - in some contexts,
 a family of sets may be allowed
 to contain repeated copies of any given member, and
 - in other contexts
 it may form a proper class rather than a set.

https://en.wikipedia.org/wiki/Family_of_sets

Family of sets – examples

- The set of all subsets of a given set S is called the power set of S and is denoted by \(\varphi(S)\).
 The power set \(\varphi(S)\) of a given set S is a family of sets over S.
- A subset of S having k elements is called a k-subset of S. The k-subset $S^{(k)}$ of a set S form a **family** of **sets**.
- Let $S = \{a, b, c, 1, 2\}$. An example of a **family** of **sets** over S (in the multiset sense) is given by $F = \{A_1, A_2, A_3, A_4\}$, where $A_1 = \{a, b, c\}$, $A_2 = \{1, 2\}$, $A_3 = \{1, 2\}$, and $A_4 = \{a, b, 1\}$.

https://en.wikipedia.org/wiki/Family_of_sets

Filter

- a **filter** on a set X is a family \mathscr{B} of subsets such that:
- $X \in \mathcal{B}$ and $\emptyset \notin \mathcal{B}$ if $A \in \mathcal{B}$ and $B \in \mathcal{B}$, then $A \cap B \in \mathcal{B}$ If $A, B \subset X, A \in \mathcal{B}$, and $A \subset B$, then $B \in \mathcal{B}$
- A filter on a set may be thought of as representing a "collection of large subsets", one intuitive example being the neighborhood filter.
- **Filters** appear in order theory, model theory, and set theory, but can also be found in topology, from which they originate. The dual notion of a **filter** is an ideal.

```
https://en.wikipedia.org/wiki/Filter_(set_theory)#filter_base
```


Neighbourhood basis (1)

- A neighbourhood basis or local basis
 (or neighbourhood base or local base) for a point x
 is a filter base of the neighbourhood filter;
- this means that it is a subset $\mathscr{B} \subseteq \mathscr{N}(x)$ such that for all $V \in \mathscr{N}(x)$, there exists some $B \in \mathscr{B}$ such that $B \subseteq V$. That is, for any **neighbourhood** V we can find a **neighbourhood** B in the **neighbourhood basis** that is contained in V.

https://en.wikipedia.org/wiki/Neighbourhood system#Neighbourhood basis

Neighbourhood basis (2)

• Equivalently, $\mathcal B$ is a local basis at x if and only if the neighbourhood filter $\mathcal N$ can be recovered from $\mathcal B$ in the sense that the following equality holds:

$$\mathcal{N}(x) = \{ V \subseteq X : B \subseteq V \text{ for some } B \in \mathcal{B} \}$$

• A family $\mathscr{B} \subseteq \mathscr{N}(x)$ is a neighbourhood basis for x if and only if \mathscr{B} is a cofinal subset of $(\mathscr{N}(x),\supseteq)$ with respect to the partial order \supseteq (importantly, this partial order is the superset relation and not the subset relation).

https://en.wikipedia.org/wiki/Neighbourhood system#Neighbourhood basis

A collection of sets around x

- In general, one refers to the <u>family</u> of sets containing 0, used to <u>approximate</u> 0, as a <u>neighborhood</u> basis;
- a member of this neighborhood basis is referred to as an open set.
- In fact, one may generalize these notions to an arbitrary set (X);
 rather than just the real numbers.
- In this case, given a point (x) of that set (X),
 one may define a collection of sets
 "around" (that is, containing) x, used to approximate x.

Smaller sets containing x

- Of course, this collection would have to satisfy certain properties (known as axioms) for otherwise we may <u>not</u> have a well-defined method to measure distance.
- For example, every point in X should approximate x to some degree of accuracy.
- Thus X should be in this family.
- Once we begin to define "smaller" sets containing x, we tend to approximate x to a greater degree of accuracy.
- Bearing this in mind, one may <u>define</u> the remaining axioms that the family of sets about x is required to satisfy.

Open ball (1)

- a ball is the solid figure bounded by a sphere;
 it is also called a solid sphere.
 - a closed ball includes the boundary points that constitute the sphere
 - an open ball excludes them

https://en.wikipedia.org/wiki/Ball_(mathematics)

Open ball (2)

- A ball in n dimensions is called a hyperball or n-ball and is bounded by a hypersphere or (n-1)-sphere
- One may talk about balls in any topological space X, not necessarily induced by a metric.
- An n-dimensional topological ball of X is any subset of X which is homeomorphic to an Euclidean n-ball.

https://en.wikipedia.org/wiki/Ball_(mathematics)

Outline

- Open Sets and Classes
 - Open Set
 - Class
- 2 Borel Sets
 - Measurable Space
 - Topological Space
 - Borel Sets
- Stochatic Process

Class (1)

- a class is a collection of sets
 (or sometimes other mathematical objects)
 that can be unambiguously <u>defined</u>
 by a property that all its members share.
- Classes act as a way to have set-like collections while differing from sets so as to avoid Russell's paradox

```
https://en.wikipedia.org/wiki/Class_(set_theory)
```

Class (2)

- A class that is not a set is called a proper class, and
- a class that is a set is sometimes called a small class.
- the followings are proper classes in many formal systems
 - the class of all sets
 - the class of all ordinal numbers
 - the class of all cardinal numbers

https://en.wikipedia.org/wiki/Class_(set_theory)

Class (3)

- consider "the set of all sets with property X."
- especially when dealing with categories, since the objects of a concrete category are all sets with certain additional structure.
- However, if we're not careful about this we can get into serious trouble –

https://www.quora.com/In-set-theory-what-is-the-difference-between-a-set-of-objects-and-a-class-of-objects

Class (4)

- let X be the set of all sets which do not contain themselves
- Since X is a set, we can ask whether X is an element of itself.
- But then we run into a paradox –
 if X contains itself as an element,
 then it does not, and vice versa.

https://www.quora.com/In-set-theory-what-is-the-difference-between-a-set-of-objects-and-a-class-of-objects

Class (5)

- In order to avoid this paradox,
 we <u>cannot</u> consider the collection of <u>all</u> sets
 to be itself a set.
- This means we have to throw out the whole "the set of all sets with property X" construction.
 But we wanted that.
- So the way we get around it is to say that there's something called a class, which is like a set but not a set.

https://www.quora.com/In-set-theory-what-is-the-difference-between-a-set-ofobjects-and-a-class-of-objects

Class (6)

- Then we can talk about
 "the class X of all sets with property Y."
- Since X is not a set,
 it can't be an element of itself, and we're fine.
- Of course, if we need to talk about the collection of all classes, we need to create another name that goes another step back, and so forth.

https://www.quora.com/In-set-theory-what-is-the-difference-between-a-set-of-objects-and-a-class-of-objects

Class Examples (1)

- The collection of all algebraic structures of a given type will usually be a proper class.
 (a class that is not a set is called a proper class)
 - the class of all groups
 - the class of all vector spaces
 - and many others.
- Within set theory, many collections of sets turn out to be proper classes.

```
https://en.wikipedia.org/wiki/Class (set theory)
```

Class Examples (2)

- One way to prove that a class is proper is to place it in bijection with the class of all ordinal numbers.
 - Cardinal numbers indicate an <u>amount</u>
 how many of something we have: one, two, three, four, five.
 - Ordinal numbers indicate position in a series: first, second, third, fourth, fifth.

```
https://en.wikipedia.org/wiki/Class_(set_theory)
https://editarians.com/cardinals-ordinals/
```

Class Paradoxes (1)

- The paradoxes of naive set theory can be explained in terms of the inconsistent tacit assumption that "all classes are sets".
- These paradoxes do <u>not</u> arise with classes because there is no notion of classes containing classes.
- Otherwise, one could, for example, define a class of all classes that do <u>not</u> contain themselves, which would lead to a <u>Russell paradox</u> for classes.

```
https://en.wikipedia.org/wiki/Class_(set_theory)
```


Class Paradoxes (2)

- With a rigorous foundation,
 these paradoxes instead suggest proofs
 that certain classes are proper (i.e., that they are not sets).
 - Russell's paradox suggests a proof that the class of <u>all</u> sets which do not contain themselves is proper
 - the **Burali-Forti paradox** *suggests* that the class of all ordinal numbers is proper.

```
https://en.wikipedia.org/wiki/Class (set theory)
```

Russell's Paradox (1)

 According to the unrestricted comprehension principle, for any sufficiently well-defined property, there is the set of all and only the objects that have that property.

Russell's Paradox (2)

- Let R be the set of all sets $(R = \{x \mid x \notin x\})$ that are <u>not</u> members of themselves $(R \notin R)$.
 - if R is <u>not</u> a member of itself (R ∉ R),
 then its definition (the set of all sets) entails that it is a member of itself (R ∈ R);
 - yet, if it is a member of itself $(R \in R)$, then it is <u>not</u> a member of itself $(R \notin R)$, since it is the set of all sets that are not members of themselves $(R \notin R)$
- the resulting contradiction is Russell's paradox.
- Let $R = \{x \mid x \notin x\}$, then $R \in R \iff R \notin R$

Russell's Paradox (3)

- Most sets commonly encountered are not members of themselves.
- For example, consider the set of all squares in a plane.
- This set is <u>not</u> itself a <u>square</u> in the plane, thus it is not a <u>member</u> of itself.
- Let us call a set "normal" if it is <u>not</u> a member of itself, and "abnormal" if it is a member of itself.

Russell's Paradox (4)

- Clearly every set must be either normal or abnormal.
- The set of squares in the plane is normal.
- In contrast, the complementary set
 that contains everything which is <u>not</u> a <u>square</u> in the plane
 is itself <u>not</u> a <u>square</u> in the plane,
 and so it is one of its own members
 and is therefore abnormal.

Russell's Paradox (5)

- Now we consider the set of all normal sets, R, and try to determine whether R is normal or abnormal.
 - If R were normal, it would be contained in the set of all normal sets (itself), and therefore be abnormal;
 - on the other hand if R were abnormal, it would <u>not</u> be contained in the set of all normal sets (itself), and therefore be normal.
- This leads to the conclusion that
 R is neither normal nor abnormal: Russell's paradox.

Outline

- Open Sets and Classes
 - Open Set
 - Class
- 2 Borel Sets
 - Measurable Space
 - Topological Space
 - Borel Sets
- Stochatic Process

Mathematical objects (1)

- a mathematical object is an abstract concept arising in mathematics.
- an mathematical object is anything that has been (or could be) formally defined, and with which one may do
 - deductive reasoning
 - mathematical proofs

 $https://en.wikipedia.org/wiki/Mathematical_object$

Mathematical objects (2)

- typically, a mathematical object
 - can be a value that can be assigned to a variable
 - therefore can be involved in formulas

 $https://en.wikipedia.org/wiki/Mathematical_object$

Mathematical objects (3)

- commonly encountered mathematical objects include
 - numbers
 - sets
 - functions
 - expressions
 - geometric objects
 - transformations of other mathematical objects
 - spaces

https://en.wikipedia.org/wiki/Mathematical object

Mathematical objects (4)

- Mathematical objects can be very complex;
 - for example, the followings are considered as mathematical objects in proof theory.
 - theorems
 - proofs
 - theories

https://en.wikipedia.org/wiki/Mathematical_object

Structure (1)

- a structure is a set endowed with some additional features on the set
 - an operation
 - relation
 - metric
 - topology
- often, the additional features are attached or related to the set, so as to provide it with some additional meaning or significance.

https://www.localmaxradio.com/questions/what-is-a-mathematical-space

Structure (2)

- A partial list of possible structures are
 - measures
 - algebraic structures (groups, fields, etc.)
 - topologies
 - metric structures (geometries)
 - orders
 - events
 - equivalence relations
 - differential structures
 - categories.

https://www.localmaxradio.com/questions/what-is-a-mathematical-space

Space (1)

- A space consists of selected mathematical objects that are treated as points, and selected relationships between these points.
 - the *nature* of the points can vary widely: for example, the points can be
 - elements of a set
 - functions on another space
 - subspaces of another space
 - It is the relationships between points that define the nature of the space.

https://en.wikipedia.org/wiki/Space (mathematics)

Space (2)

- modern mathematics uses many types of spaces, such as
 - Euclidean spaces
 - linear spaces
 - topological spaces
 - Hilbert spaces
 - probability spaces
- modern mathematics does <u>not</u> <u>define</u> the notion of space itself.

https://en.wikipedia.org/wiki/Space (mathematics)

Space (3)

- a space is
 a set (or a universe) with some added features
- it is <u>not</u> always clear whether a given mathematical object should be considered as a geometric space, or an algebraic structure
- a general <u>definition</u> of **structure** embraces all common types of **space**

```
https://en.wikipedia.org/wiki/Space_(mathematics)
```

Mathematical space (1)

- A mathematical space is, informally, a collection of mathematical objects under consideration.
- The universe of mathematical objects within a space are precisely defined entities whose rules of interaction come baked into the rules of the space.

https://www.localmaxradio.com/questions/what-is-a-mathematical-space

Mathematical space (2)

- A space differs from a mathematical set in several important ways:
 - A mathematical set is also a collection of objects
 - but these objects are being pulled from a space (or universe) of objects where the rules and definitions have already been agreed upon

https://www.localmaxradio.com/questions/what-is-a-mathematical-space

Mathematical space (3)

- A space differs from a mathematical set in several important ways:
 - a mathematical set has no internal structure,
 - a **space** usually has some internal structure.

https://www.local maxradio.com/questions/what-is-a-mathematical-space

Mathematical space (4)

- having some internal structure could mean a variety of things, but typically it involves
 - *interactions* and *relationships* between elements of the **space**
 - rules on how to create and define new elements of the space

https://www.localmaxradio.com/questions/what-is-a-mathematical-space

Measurable space (1)

- A measurable space is any space with a sigma-algebra which can then be equipped with a measure
 - collection of subsets of the space following certain rules with a way to assign sizes to those sets.

https://www.quora.com/What-is-a-measurable-space-and-probability-space-

intuitively-What-differences-do-they-have

Measurable space (2)

- Intuitively, certain sets belonging to a measurable space can be given a size in a consistent way.
 - consistent way means that certain axioms are met:
 - the empty set is given a size of zero
 - if a measurable set is contained inside another one, then its size is less than or equal to the size of the containing set
 - the size of a disjoint union of sets is the sum of the individual sets' sizes

https://www.quora.com/What-is-a-measurable-space-and-probability-space-

intuitively-What-differences-do-they-have

Probability space

- A probability space is simply
 a measurable space equipped with a probability measure.
- A probability measure has the <u>special property</u> of giving the <u>entire space</u> a size of 1.
 - this then implies that the size
 of any <u>disjoint union</u> of sets
 (the <u>sum</u> of the <u>sizes</u> of the sets)
 in the <u>probability space</u>
 is less than or equal to 1

https://www.quora.com/What-is-a-measurable-space-and-probability-space-

intuitively-What-differences-do-they-have

Euclidean space definition (1)

• A subset U of the **Euclidean n-space** \mathbb{R}^n is open

```
if, for every point x in U, there exists a positive real number \varepsilon (depending on x) such that any point in \mathbb{R}^n whose Euclidean distance from x is smaller than \varepsilon belongs to U
```

Euclidean space definition (2)

• Equivalently, a subset U of \mathbb{R}^n is open

```
if every point in U is the center of an open ball contained in U
```

• An example of a subset of $\mathbb R$ that is <u>not</u> open is the closed interval [0,1], since <u>neither</u> $0-\varepsilon$ <u>nor</u> $1+\varepsilon$ <u>belongs</u> to [0,1] for any $\varepsilon>0$, no matter how small.

```
https://en.wikipedia.org/wiki/Open set
```

Metric space definition (1)

- A subset U of a metric space (M,d) is called open
 - if, for any point x in U, there exists a real number $\varepsilon > 0$ such that any point $y \in M$ satisfying $d(x,y) < \varepsilon$ belongs to U.
- Equivalently, U is open
 if every point in U
 has a neighborhood contained in U.
- This generalizes the Euclidean space example, since Euclidean space with the Euclidean distance is a metric space.

Metric space definition (2)

formally, a metric space is an ordered pair (M, d) where M is a set and d is a metric on M, i.e., a function

$$d: M \times M \rightarrow \mathbb{R}$$

satisfying the following axioms for all points $x, y, z \in M$:

- d(x,x) = 0.
- if $x \neq y$, then d(x,y) > 0.
- d(x,y) = d(y,x).
- $d(x,z) \le d(x,y) + d(y,z)$.

Metric space definition (3)

- satisfying the following axioms for all points $x, y, z \in M$:
 - the distance from a point to itself is zero:
 - (Positivity) the distance between two distinct points is always positive:
 - (Symmetry) the distance from x to y is always the same as the distance from y to x:
 - (Triangle inequality) you can arrive
 at z from x by taking a detour through y,
 but this will not make your journey any faster
 than the shortest path.
- If the metric *d* is <u>unambiguous</u>, one often refers by abuse of notation to "the metric space *M*".

Outline

- Open Sets and Classes
 - Open Set
 - Class
- 2 Borel Sets
 - Measurable Space
 - Topological Space
 - Borel Sets
- Stochatic Process

Topology (1)

topology
 from the Greek words
 τόπος, 'place, location',
 and λόγος, 'study'

https://en.wikipedia.org/wiki/Topology

Topology (2)

- topology is concerned with the properties of a geometric object that are preserved
 - under continuous deformations such as
 - stretching
 - twisting
 - crumpling
 - bending

https://en.wikipedia.org/wiki/Topology

- that is, without
 - closing holes
 - opening holes
 - tearing
 - gluing
 - passing through itself

Topological space (1)

a topological space is, roughly speaking,

a geometrical space in which closeness is defined

but <u>cannot</u> <u>necessarily</u> be measured by a <u>numeric</u> distance.

https://en.wikipedia.org/wiki/Borel set

Topological space (2)

- More specifically, a topological space is
 - a set whose elements are called points,
 - along with an additional structure called a topology,
- which can be defined as
 - a set of neighbourhoods for each point
 - that satisfy some <u>axioms</u> formalizing the concept of closeness.

https://en.wikipedia.org/wiki/Borel set

Topological space (3)

 There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate.

 $https://en.wikipedia.org/wiki/Borel_set$

Topological space (4)

- A topological space is the most general type of a mathematical space that allows for the definition of
 - limits
 - continuity
 - connectedness
- Although very general,
 the concept of topological spaces is fundamental,
 and used in virtually every branch of modern mathematics.
- The study of topological spaces in their own right is called point-set topology or general topology.

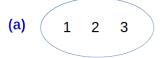
Topological space (5)

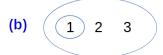
- Common types of topological spaces include
 - Euclidean spaces: a set of points satisfying certain relationships, expressible in terms of distance and angles.
 - metric spaces: a set together with a notion of distance between points. The distance is measured by a function called a metric or distance function.
 - manifolds: a topological space that *locally* resembles
 Euclidean space near each point. More precisely, an n-manifold is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of n-dimensional Euclidean space.

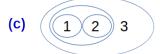
Examples of topoloy (1)

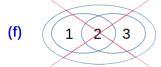
- Let τ be denoted with the circles, here are four examples (a), (b), (c), (d), and two non-examples (e), (f) of topologies on the three-point set {1,2,3}.
- (e) is <u>not</u> a topology because the union of {2} and {3} [i.e. {2,3}] is missing;
- **(f)** is not a topology because the intersection of {1,2} and {2,3} [i.e. {2}], is missing.

Examples of topoloy (2)









Every union of (c)

(c) is a topology $\{\{\},\{1\},\{2\},\{1,2\},\{1,2,3\}\}$ every union of (c)

U	{}	{1}	{2}	{1,2}	{1,2,3}
{}	{}	{1}	{2}	{1,2}	{1,2,3}
{1}	{1}	{1}	{1,2}	{1,2}	{1,2,3}
{2}	{2}	{1,2}	{2}	{1,2}	{1,2,3}
{1,2}	{1,2}	{1,2}	{1,2}	{1,2}	{1,2,3}
{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}

Every intersection of (c)

(c) is a topology $\{\{\},\{1\},\{2\},\{1,2\},\{1,2,3\}\}$ every intersection of (c)

Π	{}	{1}	{2}	{1,2}	{1,2,3}
{}	{}	{}	{}	{}	{}
{1}	{}	{1}	{}	{1}	{1}
{2}	{}	{}	{2}	{2}	{2}
{1,2}	{}	{1}	{2}	{1,2}	{1,2}
{1,2,3}	{}	{1}	{2}	{1,2}	{1,2,3}

Every union of (f)

(f) is <u>not</u> a topology $\{\{\},\{1,2\},\{2,3\},\{1,2,3\}\}$ every union of (f)

U	{}	{1,2}	$\{2,3\}$	{1,2,3}
{}	{}	{1,2}	{2,3}	{1,2,3}
{1,2}	{1,2}	{1,2}	{1,2,3}	{1,2,3}
{2,3}	{2,3}	{1,2,3}	{2,3}	{1,2,3}
{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}

Every intersection of (f)

(f) is not a topology $\{\{\},\{1,2\},\{2,3\},\{1,2,3\}\}$ every intersection of (f)

\cap	{}	{1,2}	{2,3}	{1,2,3}
{}	{}	{}	{}	{}
{1,2}	{}	{1,2}	{2}	{1,2}
{2,3}	{}	{2}	{2,3}	{2,3}
{1,2,3}	{}	{1,2}	{2,3}	{1,2,3}

Examples of topoloy (3)

• Given $X = \{1, 2, 3, 4\}$, the *trivial* or *indiscrete* topology on X is the family $\tau = \{\{\}, \{1, 2, 3, 4\}\} = \{\emptyset, X\}$ consisting of only the two subsets of Xrequired by the axioms forms a topology of X.

Examples of topoloy (4)

• Given $X = \{1,2,3,4\}$, the family $\tau = \{\{\},\{2\},\{1,2\},\{2,3\},\{1,2,3\},\{1,2,3,4\}\}$ = $\{\varnothing,\{2\},\{1,2\},\{2,3\},\{1,2,3\},X\}$ of six subsets of X forms another topology of X.

Examples of topoloy (5)

• Given $X = \{1,2,3,4\}$, the *discrete* topology on X is the power set of X, which is the family $\tau = \mathcal{O}(X)$ consisting of *all possible* subsets of X. the family

$$\tau = \{ \{ \}, \{1\}, \{2\}, \{3\}, \{4\} \}$$

$$\{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}, \{1,2,3\}, \{1,2,4\}, \{1,3,4\}, \{2,3,4\}, \{1,2,3,4\} \}$$

• In this case the topological space (X, τ) is called a *discrete* space.

Examples of topoloy (6)

• Given $X = \mathbb{Z}$, the set of integers, the family τ of all finite subsets of the integers plus \mathbb{Z} itself is <u>not</u> a topology, because (for example) the <u>union</u> of all finite sets <u>not</u> containing <u>zero</u> is <u>not</u> finite <u>but</u> is also <u>not</u> all of \mathbb{Z} , and so it cannot be in τ .

Definition via Open Sets (1)

- A topology τ on a set X is
 - a set of subsets of X with the properties below.
 - a topology τ on a set X: a set of subsets of X
 - members of τ : subsets of X
- \bullet each member of τ is called an open set.
- X together with τ is called a **topological space**

```
https://en.wikipedia.org/wiki/Open set
```

Definition via Open Sets (2)

- topology τ : a set of subsets of X has the properties below
 - $X \in \tau$ and $\varnothing \in \tau$
 - any union of sets in τ belong to τ : any union of subsets of X belong to τ : if $\{U_i: i \in I\} \subseteq \tau$ then

$$\bigcup_{i\in I}U_i\in\tau$$

• any finite intersection of sets in τ belong to τ any finite intersection of subsets of X belong to τ : if $U_1, \ldots, U_n \in \tau$ then

$$U_1 \cap \cdots \cap U_n \in \tau$$

https://en.wikipedia.org/wiki/Open set

Definition via Open Sets (3)

- <u>Infinite</u> intersections of open sets need <u>not</u> be open.
- For example, the intersection of all intervals of the form (-1/n, 1/n), where n is a positive integer, is the set $\{0\}$ which is not open in the real line.
- A metric space is a topological space, whose topology consists of the collection of all subsets that are unions of open balls.
- There are, however, topological spaces that are not metric spaces.

https://en.wikipedia.org/wiki/Open set

Definition via Open Sets (4)

- A topology on a set X may be defined as a collection τ of subsets of X, called open sets and satisfying the following axioms:
 - ullet The empty set and X itself belong to au .
 - any arbitrary (finite or infinite) union of members of τ belongs to τ .
 - \bullet the intersection of any finite number of members of τ belongs to τ .

Definition via Open Sets (5)

- As this definition of a topology is the most commonly used, the set τ of the open sets is commonly called a **topology** on X.
- A subset $C \subseteq X$ is said to be closed in (X, τ) if its complement $X \setminus C$ is an open set.

Definition via Neighborhoods (1)

- This axiomatization is due to Felix Hausdorff.
- Let X be a set;
- the elements of X are usually called points, though they can be any mathematical object.
- We allow X to be empty.

Definition via Neighborhoods (2)

- Let \mathcal{N} be a function assigning to each x (point) in X a non-empty collection $\mathcal{N}(x)$ of subsets of X.
- The elements of $\mathcal{N}(x)$ will be called neighbourhoods of x with respect to \mathcal{N} (or, simply, neighbourhoods of x).
- The function N is called a neighbourhood topology if the axioms below are satisfied; and
- then X with \mathcal{N} is called a topological space.

Definition via Neighborhoods (3)

- If N is a neighbourhood of x (i.e., $N \in \mathcal{N}(x)$), then $x \in N$. In other words, each point belongs to every one of its neighbourhoods.
- If N is a subset of X and includes a neighbourhood of x, then N is a neighbourhood of x. I.e., every superset of a neighbourhood of a point $x \in X$ is again a neighbourhood of x.
- The intersection of two neighbourhoods of x x is a neighbourhood of x.
- Any neighbourhood $\mathcal N$ of x includes a neighbourhood $\mathcal M$ of x such that $\mathcal N$ is a neighbourhood of each point of M.

Definition via Neighborhoods (4)

- The first three axioms for neighbourhoods have a clear meaning.
- The fourth axiom has a very important use in the structure of the theory, that of linking together the neighbourhoods of different points of X.
- A standard example of such a system of neighbourhoods is for the real line ℝ,
 where a subset N of ℝ is defined to be a neighbourhood of a real number x if it includes an open interval containing x.

Definition via Neighborhoods (5)

- Given such a structure, a subset U of X is defined to be open
 if U is a neighbourhood of all points in U.
- The open sets then satisfy the axioms given below.
- Conversely, when given the **open sets** of a topological space, the neighbourhoods satisfying the above axioms can be recovered by defining N to be a neighbourhood of x if N includes an open set U such that $x \in U$.

Definitions via Closed Sets (1)

- Using de Morgan's laws, the above axioms defining open sets become axioms defining closed sets:
- The empty set and X are closed.
 - The intersection of any collection of closed sets s also closed.
 - The union of any <u>finite number</u> of closed sets is also closed.
- Using these axioms, another way to define a topological space is as a set X together with a collection τ of closed subsets of X. Thus the sets in the topology τ are the closed sets, and their complements in X are the open sets.

https://en.wikipedia.org/wiki/Open set

Homeomorphism (1)

a homeomorphism

```
(from Greek ὅμοιος (homoios) 'similar, same', and μορφή (morphē) 'shape, form', named by Henri Poincaré), topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function.
```

Homeomorphism (2)

- Homeomorphisms are the isomorphisms
 in the category of topological spaces –
 the mappings that preserve
 all the topological properties
 of a given space.
- Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same.

Homeomorphism (3)

Very roughly speaking,
 a topological space is a geometric object,
 and the homeomorphism is
 a continuous stretching and bending
 of the object into a new shape.

Homeomorphism (4)

- Thus, a square and a circle are homeomorphic to each other, but a sphere and a torus are not.
- However, this description can be misleading.
- Some continuous deformations are not homeomorphisms, such as the deformation of a line into a point.
- Some homeomorphisms are not continuous deformations, such as the homeomorphism between a trefoil knot and a circle.

Outline

- Open Sets and Classes
 - Open Set
 - Class
- 2 Borel Sets
 - Measurable Space
 - Topological Space
 - Borel Sets
- Stochatic Process

Sigma algebra (1)

- We <u>term</u> the structures which allow us to use measure to be sigma algebras
- the only requirements for **sigma algebras** (on a **set** X) are:
 - the {} and X are in the **set**.
 - if A is in the **set**, complement(A) is in the **set**.
 - for any **sets** E_i in the set, $\bigcup_i E_i$ is in the **set** (for countable i).

https://medium.com/intuition/measure-theory-for-beginners-an-intuitive-approach-

f5cea0cc2e7

Sigma algebra (2)

- The most intuitive way to think about a sigma algebra is that it is the kind of structure we can do probability on.
 - for example, we can assign <u>ratios</u> of <u>areas</u> and <u>length</u>, so the <u>measure</u> on such a set X tells something about the <u>probability</u> of its <u>subsets</u>.
 - we can find the probability of subsets A and B
 because we know their ratios with respect to a set X;
 - we also know that
 - (the measure of) their complements are defined, and
 - their unions and intersections are defined,
 - so we know how to find the probability of things in this set X.

https://medium.com/intuition/measure-theory-for-beginners-an-intuitive-approach-

f5cea0cc2e7

Sigma algebra (3)

- The sigma algebra which contains the standard topology on R (that is, all open sets on R) is called the Borel Sigma Algebra, and the elements of this set are called Borel sets.
- What this gives us, is the set of sets
 on which outer measure gives our list of dreams.
 That is, if we take a Borel set and
 we check that length follows
 translation, additivity, and interval length,
 it will always hold.

https://medium.com/intuition/measure-theory-for-beginners-an-intuitive-approach-

Sigma algebra (4)

- The set of Lebesgue measurable sets is the set of Borel sets, along with (union) all the sets which differ from a Borel set by a set of measure 0.
- More intuitively, it is all the sets
 we can normally measure,
 plus a bunch of stuff
 that doesn't affect our ideas of area or volume
 (think about the border of the circle above).

https://medium.com/intuition/measure-theory-for-beginners-an-intuitive-approach-

f5cea0cc2e7

Borel Sets (1-1)

- a Borel set is any set in a topological space that can be formed from open sets (or, equivalently, from closed sets) through the operations of
 - countable union.
 - countable intersection, and
 - relative complement.

https://en.wikipedia.org/wiki/Borel_set

Borel Sets (1-2)

- For a topological space X,
 the collection of all Borel sets on X forms a σ-algebra,
 known as the Borel algebra or Borel σ-algebra.
- The Borel algebra on X is the smallest σ-algebra containing all open sets (or, equivalently, all closed sets).

https://en.wikipedia.org/wiki/Borel_set

Borel Sets (1-3)

- Borel sets are important in measure theory, since any measure defined on the open sets of a space, or on the closed sets of a space, must also be defined on all Borel sets of that space.
- Any measure defined on the Borel sets is called a Borel measure.
- Borel sets and the associated Borel hierarchy also play a fundamental role in descriptive set theory.

https://en.wikipedia.org/wiki/Borel set

Borel Sets (2)

- Borel sets are those obtained from intervals by means of the operations allowed in a σ-algebra. So we may construct them in a (transfinite) "sequence" of steps:
- ... And again and again.

Borel Sets (3-1)

- Start with finite unions of closed-open intervals.
 These sets are completely elementary, and they form an algebra.
- Adjoin countable unions and intersections of elementary sets.
 What you get already includes open sets and closed sets,
 intersections of an open set and a closed set, and so on.
 Thus you obtain an algebra, that is still not a σ-algebra.

Borel Sets (3)

- 3. Again, adjoin countable unions and intersections to 2. Observe that you get a strictly larger class, since a countable intersection of countable unions of intervals is <u>not</u> <u>necessarily</u> included in 2.
 - Explicit examples of sets in 3 but not in 2 include F_{σ} sets, like, say, the set of *rational numbers*.
- 4. And do the same again.

Borel Sets (4-1)

And even after a sequence of steps we are not yet finished.
 Take, say, a countable union of a set constructed at step 1, a set constructed at step 2, and so on. This union may very well not have been constructed at any step yet. By axioms of σ-algebra, you should include it as well - if you want, as step ∞

Borel Sets (4-2)

- (or, technically, the first infinite ordinal, if you know what that means).
- And then continue in the same way until you reach the first uncountable ordinal. And only then will you finally obtain the generated σ -algebra.

Stochastic Process (1)

In probability theory and related fields, a **stochastic** (/stoʊ'kæstɪk/) or **random** process is a mathematical object usually defined as a family of **random variables**.

The word stochastic in English was originally used as an adjective with the definition "pertaining to **conjecturing**", and stemming from a Greek word meaning "to <u>aim</u> at a mark, <u>guess</u>", and the Oxford English Dictionary gives the year 1662 as its earliest occurrence.

From Ancient Greek στοχαστικός (stokhastikós), from στοχάζομαι (stokházomai, "aim at a target, guess"), from στόχος (stókhos, "an aim, a guess").

https://en.wikipedia.org/wiki/Stochastic https://en.wiktionary.org/wiki/stochastic

Stochastic Process (2)

The definition of a **stochastic process** varies, but a **stochastic process** is *traditionally* defined as a <u>collection</u> of **random variables** <u>indexed</u> by some set.

The terms random process and stochastic process are considered <u>synonyms</u> and are used <u>interchangeably</u>, without the **index set** being precisely specified.

Both "collection", or "family" are used while instead of "index set", sometimes the terms "parameter set" or "parameter space" are used.

Stochastic Process (3)

The term **random function** is also used to refer to a **stochastic** or **random process**, though sometimes it is only used when the stochastic process takes real values.

This term is also used when the **index sets** are **mathematical spaces** other than the **real line**,

while the terms **stochastic process** and **random process** are usually used when the **index set** is interpreted as <u>time</u>,

and other terms are used such as **random field** when the **index set** is *n*-dimensional **Euclidean space** \mathbb{R}^n or a manifold

Stochastic Process (4)

A **stochastic process** can be denoted, by $\{X(t)\}_{t\in\mathcal{T}}$, $\{X_t\}_{t\in\mathcal{T}}$, $\{X(t)\}$, $\{X_t\}$ or simply as X or X(t), although X(t) is regarded as an <u>abuse</u> of <u>function notation</u>.

For example, X(t) or X_t are used to refer to the **random variable** with the **index** t, and not the entire **stochastic process**.

If the **index set** is $T = [0, \infty)$, then one can write, for example, $(X_t, t \ge 0)$ to denote the **stochastic process**.

Stochastic Process Definition (1)

A stochastic process is defined as a <u>collection</u> of random variables defined on a common probability space (Ω, \mathcal{F}, P) ,

- Ω is a sample space,
- \mathscr{F} is a σ -algebra,
- P is a probability measure;
- the random variables, indexed by some set T,
- all take values in the same **mathematical space** S, which must be **measurable** with respect to some σ -algebra Σ

Stochastic Process Definition (2)

In other words, for a given probability space (Ω, \mathscr{F}, P) and a measurable space (S, Σ) , a stochastic process is a collection of S-valued random variables, which can be written as:

$${X(t): t \in T}.$$

Stochastic Process Definition (3)

Historically, in many problems from the natural sciences a point $t \in \mathcal{T}$ had the meaning of time, so X(t) is a **random variable** representing a value observed at time t.

A **stochastic process** can also be written as $\{X(t,\omega): t\in T\}$ to reflect that it is actually a <u>function</u> of <u>two variables</u>, $t\in T$ and $\omega\in\Omega$.

Stochastic Process Definition (4)

There are other ways to consider a stochastic process, with the above definition being considered the traditional one.

For example, a stochastic process can be interpreted or defined as a S^T -valued **random variable**, where S^T is the space of all the possible functions from the set T into the space S.

However this alternative definition as a "function-valued random variable" in general requires additional regularity assumptions to be well-defined.

Index set (1)

The set T is called the **index set** or **parameter set** of the **stochastic process**.

Often this set is some <u>subset</u> of the <u>real line</u>, such as the natural numbers or an interval, giving the set T the interpretation of time.

Index set (2)

In addition to these sets, the index set T can be another set with a **total order** or a more general set, such as the Cartesian plane R^2 or n-dimensional **Euclidean space**, where an element $t \in T$ can represent a <u>point</u> in <u>space</u>.

That said, many results and theorems are only possible for **stochastic processes** with a **totally ordered index set**.

State space

The mathematical space S of a stochastic process is called its state space.

This mathematical space can be defined using integers, real lines, *n*-dimensional Euclidean spaces, complex planes, or more abstract mathematical spaces.

The **state space** is defined using elements that reflect the <u>different values</u> that the **stochastic process** can <u>take</u>.

Sample function (1)

A sample function is a <u>single</u> outcome of a stochastic process, so it is formed by taking a <u>single</u> <u>possible value</u> of each random variable of the stochastic process.

```
More precisely, if \{X(t,\omega):t\in T\} is a stochastic process, then for any point \omega\in\Omega, the mapping X(\cdot,\omega):T\to S, is called a sample function, a realization, or, particularly when T is interpreted as \underline{\operatorname{time}}, a sample path of the stochastic process \{X(t,\omega):t\in T\}.
```

Sample function (2)

This means that for a fixed $\omega \in \Omega$, there exists a sample function that maps the index set T to the state space S.

Other names for a sample function of a stochastic process include trajectory, path function or path

Open Sets and Classes Borel Sets Stochatic Process