
Link 9.A Position Independent Code

Young W. Lim

2019-03-04 Mon

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 1 / 47

Outline

1 Based on

2 0. PIC Overview (Position Independent Code)

3 1. Data References of PIC

4 2. Function Calls of PIC

5 3. Vector example explanation in the book
vector example source code
GOT and PLT entries
the 1st jump instructions of PLT entries
the last jump instructions of PLT entries
summary steps of call to addvec

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 2 / 47

Based on

"Self-service Linux: Mastering the Art of Problem Determination",
Mark Wilding
"Computer Architecture: A Programmer’s Perspective",
Bryant & O’Hallaron

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 3 / 47

Compling 32-bit program on 64-bit gcc

gcc -v

gcc -m32 t.c

sudo apt-get install gcc-multilib

sudo apt-get install g++-multilib

gcc-multilib

g++-multilib

gcc -m32

objdump -m i386

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 4 / 47

Position Independent Code

1 Sharing the same library code in memory

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 5 / 47

Sharing the same library code in memory

library code can be loaded and executed
at any address without modification by the linker
no a priori dedicated portion of the address space
-fPIC in gcc

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 6 / 47

Sharing codes on IA32 system

calls to procedures in the same object

no relocation
PC-relaive with know offsets
already PIC

calls to externally defined procedures
references to global variables

need relocation at link time
normally not PIC

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 7 / 47

TOC: PIC Data References

1 Accessing global variables
2 Global Offset Table (GOT)
3 each GOT entry is relocated
4 indirect reference through the GOT
5 indirect reference - a pattern of codes
6 global variable access using the GOT

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 8 / 47

Accessing global variables (1)

PIC references to global variables
based on the following fact

the data segment is always allocated immediately
after the code segment
regardless of the memory location where
an object module or a shared library is located

+--------------------+------------------+-----------------------+
| Read/Write segment | higher addresses | .data, .bss |
+--------------------+------------------+-----------------------+
| Read-only segment | lower addresses | .text, .init, .rodata |
+--------------------+------------------+-----------------------+
starting from 0x08048000

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 9 / 47

Accessing global variables (2)

the distance between
any instruction in the code (.text) segment and
any variable inthe data (.data) segment

is a run-time constant

independent of the absolute memory locations
of code and data segments

Global Offset Table (GOT)
located at the beginning of .data segment

.data follows .text segment

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 10 / 47

Global Offset Table (GOT)

each global data object

a global variable
a function name

has an entry in the GOT

each entry contains the appropriate absolute address

each object module has its own GOT,
which references any global data

the GOT is located at the beginning of .data segment

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 11 / 47

each GOT entry is relocated

each entry in the GOT
has a relocation record (relocation table)

at load time, the dynamic linker relocates
each entry in the GOT (of a global object)

each entry contains the appropriate absolute address

each object module has its own GOT
that references global data

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 12 / 47

indirect reference through the GOT

at run time, each global variable is
referenced indirectly through the GOT

PIC code incurs performance degradation

each global variable reference require 5 instructions
additional memory reference to the GOT
machines with large register files can overcome this disadvantages
on register demanding IA32 systems, losing even one register
can cause to spill the registers to the stack

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 13 / 47

indirect reference - a pattern of codes

call LL
LL: popl %ebx; # ebx contains the current PC

addl $VAROFF, %ebx # ebx points to the GOT entry for var
movl (%ebx), %eax # references indirect through the GOT
movl (%eax), %eax

PC+$VAROFF -- the address of the GOT entry for var
M[PC+$VAROFF] -- the absolute address of var

M[M[PC+$VAROFF]] -- the value of var

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 14 / 47

a pattern of codes - call LL, LL: popl %ebs

call LL
LL: popl %ebx; # ebx contains the current PC

the call to LL pushes the return address on the stack
the return address is the address LL of popl instruction
then popl instruction pops the return address LL into %ebx

the result of these 2 instructions (call and popl) is
to move the value of the PC into register %ebx

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 15 / 47

a pattern of codes - the address LL

call LL
LL: popl %ebx; # ebx contains the current PC

the LL address

the return address stored on the stack
the address of the popl instruction
the address to be popped by the popl instruction
the current PC to be stored into %ebx

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 16 / 47

a pattern of codes - addl $VAROFF, %ebx

addl $VAROFF, %ebx # ebx points to the GOT entry for var
movl (%ebx), %eax # fetch the absolute address to %eax
movl (%eax), %eax # fetch the global variable

addl adds a constant offest $VAROFF to %ebx
for the appropriate entry in the GOT
where the absolute address of a symbol can be fetched

initial %ebx : the current PC of the popl %ebx
final %ebx : PC + $VAROFF

now, the global variable can be accessed indirectly
through the GOT entry contained in %ebx

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 17 / 47

a pattern of codes - movl (%ebx), %eax, movl (%eax),
%eax

addl $VAROFF, %ebx # ebx points to the GOT entry for var
movl (%ebx), %eax # fetch the absolute address to %eax
movl (%eax), %eax # fetch the global variable

the 2 movl load the contents of the global variable
indirectly through the GOD into register %eax

the 1st movl (%ebx), %eax fetches
the absolute address of a gloabl variable into %eax

the 2nd movl (%eax), %eax
the value of the global variable into %eax

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 18 / 47

TOC: PIC Function Calls

resolving external procedure calls
Lazy Binding
addvec, multvec, main

the example GOT entries
the example PLT entries
initial procedure address binding
update procedure address binding
steps of call to <addvec>

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 19 / 47

resolving external procedure calls (1)

if the same approach would be ued
as the PIC global variable references

this approach require 3 additional instructions

instead of this approach, the lazy binding technique is used

call LL
LL: popl %ebx; # ebx contains the current PC

addl $PROCOFF, %ebx # ebx points to the GOT entry for proc
call *(%ebx) # call indirect through the GOT

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 20 / 47

resolving external procedure calls (2)

ELF compilation systems use lazy binding technique

defers the binding of procedure addresses
until the first time the procedure is actually called
significant run-time overhead the first time call
but for subsequent calls

just one additional instruction
an indirect memory reference

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 21 / 47

Lazy Binding Technique

implemented with 2 data structures : GOT and PLT

Global Offset Table
Procedure Linkage Table

if an object module calls any functions of shared libraries
then the object module has its own GOT and PLT
GOT in .data section (absolute address)
PLT in .text section

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 22 / 47

resolving a function address using PLT (1)

The caller of a function in a different shared object
transfers control to the start of the PLT entry
associated with the function.

The first part of the PLT entry
loads the address from the GOT entry
associated with the function to be called.
The control is transferred to the code at this address.
If the function has already been called at least once,
or lazy binding is not used, then the address found
in the GOT is the address of the function.

http://refspecs.linuxfoundation.org/ELF/zSeries/lzsabi0_zSeries/x2251.html#PLTEX

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 23 / 47

resolving a function address using PLT (2)

If a function has never been called
and lazy binding is used then the address
in the GOT points to the second part of the PLT
The second part loads the offset
in the symbol table associated with the callee
Control is then transferred to the special
first entry of the PLT (PLT[0])

This first entry of the PLT entry calls
the dynamic linker giving it
the offset into the symbol table
and the address of a structure
that identifies the location of the caller

http://refspecs.linuxfoundation.org/ELF/zSeries/lzsabi0_zSeries/x2251.html#PLTEX

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 24 / 47

resolving a function address using PLT (3)

The dynamic linker finds
the real address of the symbol.
It will store this address
in the GOT entry of the function
in the object code of the caller
and it will then transfer control to the function.

Subsequent calls to the function
from this object will find the resolved address
in the first half of the PLT entry
and will transfer control directly
without invoking the dynamic linker

http://refspecs.linuxfoundation.org/ELF/zSeries/lzsabi0_zSeries/x2251.html#PLTEX

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 25 / 47

addvec and multvec

void addvec (int *x, int *y, int *z, int n)
{

int i;

for (i=0; i<n; i++)
z[i] = x[i] + y[i];

}

void multvec (int *x, int *y, int *z, int n)
{

int i;

for (i=0; i<n; i++)
z[i] = x[i] * y[i];

}

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 26 / 47

main

#include <stdio.h>
#include "vector.h"

int x[2] = {1, 2};
int y[2] = {3, 4};
int z[2];

int main ()
{

addvec(x, y, z, 2);
printf("z= (%d %d)\n", z[0], z[1]);
return 0;

}

in main function, addvec and printf functions are called

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 27 / 47

the example GOT entries

Address Entry Contents Description
08049674 GOT[0] 0804969c address of .dynamic section
08049678 GOT[1] 4000a9f8 identifying info for the linker
0804967c GOT[2] 4000596f entry point in dynamic linker
08049680 GOT[3] 0804845a address of pushl in PLT[1] (printf)
08049684 GOT[4] 0804846a address of pushl in PLT[2] (addvec)

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 28 / 47

GOT[0], GOT[1], GOT[2]

08049674 GOT[0] 0804969c address of .dynamic section

contains the address of the .dynamic seqment
dynamic linker use this address to bind procedure addresses
such as the location of the symbol table and relocation information

08049678 GOT[1] 4000a9f8 identifying info for the linker

contains information that defines the object module of interest

0804967c GOT[2] 4000596f entry point in dynamic linker

contains an entry point into the lazy binding code of the dynamic linker

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 29 / 47

GOT[3], GOT[4]

each procedure
defined in a shared object
called by main gets an entry in the GOT

starting from GOT[3]

08049680 GOT[3] 0804845a address of pushl in PLT[1] (printf)

GOT entry for addvec defined in libvector.so

08049684 GOT[4] 0804846a address of pushl in PLT[2] (addvec)

GOT entry for printf defined in libc.so

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 30 / 47

the example PLT entries

PLT[0]
8048444: pushl 0x8049678 push addr(GOT[1])
804844a: jmp *0x804967c jmp to *GOT[2] (linker)
8048450: padding
8048452: padding
PLT[1] <printf>
8048454: jmp *0x8049680 jmp to *GOT[3]
804845a: pushl $0x0 ID for printf
804845f: jmp 0x8048444 jmp to PLT[0]
PLT[2] <addvec>
8048464: jmp *0x8049684 jmp to *GOT[4]
804846a: pushl $0x8 ID for addvec
804846f: jmp 0x8048444 jmp to PLT[0]

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 31 / 47

the 1st jmp instructions of PLT[0], PLT[1], PLT[2]

PLT[0] has a special entry that jumps into *GOT[2] (dynamic linker)
PLT[1] has a printf entry that jumps into *GOT[3]

PLT[2] has a addvec entry that jumps into *GOT[4]

each called procedure (printf, addvec) has
an entry in the PLT starting at PLT[1]

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 32 / 47

initial procedure address binding

after the program has been dynamically linked
and is ready to begin executing

printf procedure addresses are bound to
the address of the first instruction in PLT[1]
that is jmp to *GOT[3]

8048454: jmp *0x8049680 jmp to *GOT[3]

addvec procedure addresses are bound to
the address of the first instruction in PLT[2]
that is jmp to *GOT[4]

8048464: jmp *0x8049684 jmp to *GOT[4]

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 33 / 47

initial *GOT[3] and *GOT[4] GOT entry contents

Address Entry Contents Description
08049680 GOT[3] 0804845a address of pushl in PLT[1] (printf)
08049684 GOT[4] 0804846a address of pushl in PLT[2] (addvec)

*GOT[3] = 0804845a : pushl $0x0 (printf id)
the address of the second instruction in PLT[1]
*GOT[4] = 0804846a : pushl $0x8 (addvec id)
the address of the second instruction in PLT[2]

in PLT[1]
804845a pushl $0x0 ID for printf

in PLT[2]
804846a: pushl $0x8 ID for addvec

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 34 / 47

initial jmp to *GOT[3] and jmp to *GOT[4]

jmp to *GOT[3] ≡ jmp to M[8049680] ≡ jmp to 804845a
the next instruction (pushl) of the 1st instruciton jmp to *GOT[3]

jmp to *GOT[4] ≡ jmp to M[8049684] ≡ jmp to 804846a next
instruction (pushl)
the next instruction (pushl) of the 1st instruction jmp to *GOT[4]

PLT[1] <printf> 8048454 jmp *0x8049680 jmp to *GOT[3]
804845a pushl $0x0 ID for printf

PLT[2] <addvec> 8048464 jmp *0x8049684 jmp to *GOT[4]
804846a pushl $0x8 ID for addvec

Address Entry Contents Description
08049680 GOT[3] 0804845a address of pushl in PLT[1] (printf)
08049684 GOT[4] 0804846a address of pushl in PLT[2] (addvec)

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 35 / 47

initial indirect jump in PLT

initially, each GOT entry (*GOT[3], *GOT[4])
contains the address of the pushl entry (the second instruction)
in the corresponding PLT entry

the indirect jump in the PLT
(jmp to *GOT[3], jmp to *GOT[4])
simply transfers control back
to the next instruction in the PLT entry

ID for printf : 0x0 on the stack (pushl $0x0)
ID for addvec : 0x8 on the stack (pushl $0x8)

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 36 / 47

the last jmp to PLT[0] instruction of PLT entry contents

the last instruction of PLT[1] and PLT[2] jumps to PLT[0]

PLT[1] 804845f: jmp 0x8048444 jmp to PLT[0]
PLT[2] 804846f: jmp 0x8048444 jmp to PLT[0]

PLT[0] 8048444: pushl 0x8049678 push addr(GOT[1])
804844a: jmp *0x804967c jmp to *GOT[2] (linker)

the first instruction of PLT[0]
pushl 08049678 = pushl &GOT[1]

the second instruction of PLT[0]
jmp to 4000596f = jmp to *GOT[2]

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 37 / 47

the instructions of PLT[0]

pushl 08049678 = pushl &GOT[1]
pushes $0x400a9f8 on the stack
(identifying info for the linker)

jmp to 4000596f = jmp to *GOT[2]
jump into the dynamic linker indirectly
to *GOT[2] = 4000596f
(entry point in dynamic linker)

PLT[0] 8048444: pushl 0x8049678 push addr(GOT[1])
804844a: jmp *0x804967c jmp to *GOT[2] (linker)

Address Entry Contents Description
08049674 GOT[0] 0804969c address of .dynamic section
08049678 GOT[1] 4000a9f8 identifying info for the linker
0804967c GOT[2] 4000596f entry point in dynamic linker

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 38 / 47

two stack entries

in PLT[1] and PLT[2]
at *GOT[3] = 0804845a : pushl $0x0 (printf id)
at *GOT[4] = 0804846a : pushl $0x8 (addvec id)

804845a: pushl $0x0 ID for printf
804846a: pushl $0x8 ID for addvec

in PLT[0]
push $0x400a9f8 on the stack
pushl &GOT[1] = pushl 08049678

8048444: pushl 0x8049678 push addr(GOT[1])

Address Entry Contents Description
08049674 GOT[0] 0804969c address of .dynamic section
08049678 GOT[1] 4000a9f8 identifying info for the linker
0804967c GOT[2] 4000596f entry point in dynamic linker

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 39 / 47

determing the address of printf and addvec

*GOT[3] = 0804845a : pushl $0x0 (printf id)

*GOT[4] = 0804846a : pushl $0x8 (addvec id)

in PLT[0]

push $0x400a9f8 on the stack
pushl &GOT[1] = pushl 08049678

the dynamic linker uses the two stack entries
to determine the actual locations of printf and addvec

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 40 / 47

update *GOT[3] and *GOT[4]

intially
*GOT[3] = 0804845a : pushl $0x0 (printf id)
*GOT[4] = 0804846a : pushl $0x8 (addvec id)

finally
*GOT[3] = <printf> address
*GOT[4] = <addvec> address

the dynamic linker overwrites GOT[3] and GOT[4]
with these newly determined addresses
and passes control to printf or addvec
the only additional overhead from this point on
is the memory reference for the indirect jump

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 41 / 47

GOT and PLT for addvec (1)

+----------+---------+----------+--+
| Address | Entry | Contents | Description |
+----------+---------+----------+--+
08049674	GOT[0]	0804969c	address of .dynamic section
08049678	GOT[1]	4000a9f8	identifying info for the linker
0804967c	GOT[2]	4000596f	entry point in dynamic linker
08049680	GOT[3]	0804845c	address of pushl in PLT[1] (printf)
08049684	GOT[4]	0804846a	address of pushl in PLT[2] (addvec)
+----------+---------+----------+--+

PLT[0]
08048444: pushl 0x8049678 # push &GOT[1]
804844a: jmp *0x804967c # jmp to *GOT[2] (linker)
8048450: # padding
8048452: # padding

...

PLT[2] <addvec>
8048464: jmp *0x8049684 # jmp to *GOT[4]
804846a: pushl $0x8 # ID for addvec
804846f: jmp 0x8048444 # jmp to PLT[0]

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 42 / 47

GOT and PLT for addvec (2)

| 08049674 | GOT[0] | 0804969c | address of .dynamic section |
| 08049684 | GOT[4] | 0804846a | address of pushl in PLT[2]
(addvec) |
8048464: jmp *0x8049684 # jmp to *GOT[4]
804846a: pushl $0x8 # ID for addvec
804846f: jmp 0x8048444 # jmp to PLT[0]

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 43 / 47

steps of call to <addvec> (1)

the call to addvec
80485bb: e8 a4 fe ff ff call 8048464 <addvec>

8048464 is the address of addvec entry of PLT[2]

8048464: jmp *0x8049684 jmp to *GOT[4]

at the first call to addvec,
control is passed to the 1st instruction in PLT[2]

the indirect jmp to *GOT[4] tranfers control back
to the next instruction pushl $0x8

804846a: pushl $0x8 ID for addvec

this instruction pushes an ID 0x8
for the addvec symbol onto the stack

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 44 / 47

steps of call to <addvec> (2)

the last instruction jumps to PLT[0],
which pushes another word of identifying information
$0x400a9f8 on the stack from GOT[1]

in PLT[0]

push $0x400a9f8 on the stack
pushl &GOT[1] = pushl 08049678

8048444 pushl 0x8049678 push addr(GOT[1])

Address Entry Contents Description
08049674 GOT[0] 0804969c address of .dynamic section
08049678 GOT[1] 4000a9f8 identifying info for the linker
0804967c GOT[2] 4000596f entry point in dynamic linker

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 45 / 47

steps of call to <addvec> (3)

then, jumps into the dynamic linker indirectly through GOT[2].

804844a jmp *0x804967c jmp to *GOT[2] (linker)

Address Entry Contents Description
08049674 GOT[0] 0804969c address of .dynamic section
08049678 GOT[1] 4000a9f8 identifying info for the linker
0804967c GOT[2] 4000596f entry point in dynamic linker

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 46 / 47

steps of call to <addvec> (4)

the dynamic linker uses the two stack entries
to determinethe location of addvec,
overwrites GOT[4] with this address
and passes control to addvec

Address Entry Contents Description
08049684 GOT[4] 0804846a address of pushl in PLT[2] (addvec)

08049684 GOT[4] actual address of addvec

Young W. Lim Link 9.A Position Independent Code 2019-03-04 Mon 47 / 47

	Based on
	0. PIC Overview (Position Independent Code)
	1. Data References of PIC
	2. Function Calls of PIC
	3. Vector example explanation in the book
	vector example source code
	GOT and PLT entries
	the 1st jump instructions of PLT entries
	the last jump instructions of PLT entries
	summary steps of call to addvec

