Thu Nov 24, 2011 8:13 AM
For continuous cdf and pdf, the probability is

$$
\begin{equation*}
P(\hat{x})=\lim _{x \rightarrow \hat{x}}\left|F_{X}(x)-F_{X}(\hat{x})\right|=0 \tag{1}
\end{equation*}
$$

$P(X<\hat{x})=P(X \leq \hat{x})=\int_{-\infty}^{\hat{x}} f(X) d X=: F(\hat{x})$
$P(X<$ hat $x)=P(X$ le That $x)=$ int_ $\{- \text {-infty }\}^{\wedge}\{$ hat $x\} f(X) d X=: F($ That $x)$
Generalization of cdf to left or right continuity:
Take (1) as the starting point, and distinguish left and right limit of x going to x hat, i.e., there are two cases:

Case 1: x tends to x hat from below
Define the probability as follows:
$P(\hat{x}):=\lim _{x \uparrow \hat{x}}\left|F_{X}(x)-F_{X}(\hat{x})\right|=0$
$P($ hat $x):=\backslash \lim \{x \backslash$ luparrow \backslash hat $x\} \mid F_{-} X(x)-F_{-} X($ hat $x) \mid=0$
then

$$
\begin{equation*}
F_{X}\left(\hat{x}^{-}\right)=F_{X}(\hat{x}) \tag{4}
\end{equation*}
$$

$$
F_{-} X\left(\text { hat } x^{\wedge}-\right)=F_{-} X(\text { hat } x)
$$

thus F is left continuous.

Note: For continuous cdf and pdf, start with the pdf to define the probability as in (2); then
$P(x<X<\hat{x})=P(x \leq X \leq \hat{x})=F_{X}(\hat{x})-F_{X}(x)$
then
$P(x<X<$ hat $x)=P(x$ le X Vie That $x)=F _X($ hat $x)-F _X(x)$
$P(x=\hat{x})=\lim _{x \rightarrow \hat{x}}\left|F_{X}(\hat{x})-F_{X}(x)\right|=0$
$P(x=$ That $x)=\operatorname{Vim} _\{x \text { to } \operatorname{That} x\} \mid F _X($ hat $x)-F _X(x) \mid=0$
Note: For Case 1, you would have in general

$$
\begin{equation*}
\lim _{x \downarrow \hat{x}}\left|F_{X}(x)-F_{X}(\hat{x})\right| \neq 0 \tag{6}
\end{equation*}
$$

$\operatorname{Vim}\{x \mid$ Idownarrow \backslash hat $x\}\left|F _X(x)-F_{-} X(\operatorname{That} x)\right|$ ne 0
thus $P(\hat{x}) \neq \lim _{x \downarrow \hat{x}}\left|F_{X}(x)-F_{X}(\hat{x})\right| \neq 0$
$P($ That $x)$ \ne \backslash Vim_ $\{x \backslash$ ddownarrow \backslash hat $x\} \mid F _X(x)-F _X($ hat $x) \mid$ ne 0
///
x_{1}^{2}

$$
\begin{align*}
& P\left(X<x_{1}\right)<P\left(X<x_{2}\right) \\
& P\left(X<\hat{x}^{+}\right)-P(X<\hat{x})=J \\
& f(x)=\frac{d F(x)}{d x}=\left.F^{\prime}(x)\right|_{x \neq \hat{x}}+\bar{J} \delta(x-\hat{x})
\end{align*}
$$

F_{1}

$$
F_{2}(x) \equiv H(x)
$$

Heaviside function $=$ step function $\hat{x} \quad \hat{J}$

$$
\begin{align*}
& F=F_{1}+H \\
& \bar{J}=J_{1}+J \\
& F^{\prime}=F_{1}^{\prime}+H^{\prime}=\left.F^{\prime}(x)\right|_{x \neq \hat{x}}+\bar{J} \delta(x-\hat{x}) \\
& F_{1}^{\prime}=\left.F^{\prime}(x)\right|_{x \neq \hat{x}}+J_{1} \delta(x-\hat{x}) \tag{13}\\
& H^{\prime}=J \delta(x-\hat{x}) \\
& f=F^{\prime} \\
& P\left(X<\hat{x}^{+}\right)-P(X<\hat{x})=F\left(\hat{x}^{+}\right)-F(\hat{x})=J
\end{align*}
$$

ศ $\delta(x-\hat{x})$ \hat{x}

$$
\int^{+\infty} \delta(x-\hat{x}) d x=1
$$

$$
\text { lint_\{-\infty }\}\{+\ \text { linfty }\} \backslash \text { delta }(x-\text { That } x) \mathrm{d} x=1
$$

$\delta(x-\hat{x})=0$ for $x \neq \hat{x}$
\delta $(x-$ hat $x)=0 \backslash$ text $\{$ for $\} \times$ ne That x

