Design Levels of Abstraction : Overview

- Gate-level Modeling
- Dataflow Modeling
- Behavioral Modeling
- Structural Modeling

Copyright (c) 2012 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Young Won Lim 05/17/2013

2-to-1 Multiplexer Example

Gate-level Modeling

always active driving a 0, 1, x, z

not	U0 (sb, s);	wire sb;
and	U1 (<mark>a0</mark> , i0, sb),	wire a0;
	U2 (<mark>a1</mark> , i1, s);	wire a1;
or	U3 (z, a0, a1);	wire z;

Dataflow Modeling

Timing Model (1A)

Continuous Assignment

Behavioral Modeling – Combinational

Timing Model (1A)

Procedural Assignment

Procedural Assignment

within always, initial combined with if () then – else –

Simulation

Timing Model (1A)

When i0 changes

When s changes

Behavioral Modeling – Sequential

Behavioral Modeling – Initialization

Parallel Processes

Structural Modeling

Sequential Assignment (2)

References

- [1] http://en.wikipedia.org/
- [2] T.R. Padmanabhan, B.T. Sundari, "Design Through Verilog HDL
- [3] D.E. Thomas, P.R. Moorby, "The Verilog Hardware Description Language", 3rd ed