## Lambda Calculus - Recursions (9A)

Copyright (c) 2024-2016 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice.

## Encoding Conditionals (1)

consider how to encode a conditional expression of the form:
if $P$ then $A$ else $B$
i.e., the value of the whole expression is either $\mathbf{A}$ or $\mathbf{B}$, depending on the value of $\mathbf{P}$
this conditional expression can be represented by
using a lambda expression as follows
COND P A B
where COND, P, A and B are all lambda expressions.

## Encoding Conditionals (2)

COND P A B

COND is a function of 3 arguments
that works by applying $P$ to ( $A$ and $B$ )
(i.e., P itself chooses A or B):

COND $==\lambda p . \lambda a . \lambda b . p$ a b
(where == means "is defined to be").

## Encoding Conditionals (3)

To make this definition work correctly, we must define the representations of true and false carefully
since the lambda expression $P$
that COND applies to its arguments $A$ and $B$
will reduce to either TRUE or FALSE
when TRUE is applied to $\mathbf{a}$ and $\mathbf{b}$ we want it to return $\mathbf{a}$ (first)
when FALSE is applied to $\mathbf{a}$ and $\mathbf{b}$ we want it to return $\mathbf{b}$. (second)
https://pages.cs.wisc.edu/~horwitz/CS704-NOTES/2.LAMBDA-CALCULUS-PART2.html\#cond

## Encoding Conditionals (4)

let TRUE be a function of two arguments
that ignores the second argument
and returns the first argument,
let FALSE be a function of two arguments
that ignores the first argument
and returns the second argument:

```
TRUE == \lambdax. \lambday.x
FALSE == \lambdax.\lambday.y
```


## Encoding Conditionals (5)

## COND TRUE M N

Note that this expression should evaluate to M.
substituting our definitions for COND and TRUE, and evaluating the resulting expression
the sequence of beta-reductions is shown below
in each case, the redex about to be reduced is indicated
by underlining the formal parameter and
the argument that will be substituted in for that parameter. NO
https://pages.cs.wisc.edu/~horwitz/CS704-NOTES/2.LAMBDA-CALCULUS-PART2.htm|\#cond

## Encoding Conditionals (6)

( $\boldsymbol{\lambda p} \cdot \lambda a \cdot \lambda b . p a b)(\lambda x . \lambda y, x) M N \rightarrow \beta$
( $\lambda \mathrm{a} . \lambda \mathrm{b} .(\lambda x . \lambda y \cdot x) \mathrm{a} b) \underline{M} \mathbf{N} \rightarrow \beta$
( $\boldsymbol{\lambda}_{\mathbf{b}}$. $\left.(\lambda x . \lambda y . x) \mathrm{M} \mathbf{b}\right) \underline{\mathbf{N}} \rightarrow \boldsymbol{\beta}$
$(\underline{\lambda x} . \lambda y . x) \underline{M} N \rightarrow \beta$
$(\underline{\lambda} . \mathrm{M}) \underline{\mathrm{N}} \rightarrow \boldsymbol{\beta}$

M
https://pages.cs.wisc.edu/~horwitz/CS704-NOTES/2.LAMBDA-CALCULUS-PART2.htm|\#cond

## Division (1-1)

Division of natural numbers may be implemented by,

```
n/m = if n\geqm then 1+(n-m)/m
    else 0
```

Calculating $\mathrm{n}-\mathrm{m}$ takes many beta reductions.

Unless doing the reduction by hand,
this doesn't matter that much,
but it is preferable to not have to do
this calculation $(n-m)$ twice.

$$
\begin{aligned}
9 / 3 & =1+(9-3) / 3 \\
& =1+(1+(6-3) / 3) \\
& =1+(1+(1+0 / 3)) \\
& =1+(1+(1+0))
\end{aligned}
$$

$n / m=$ if $n \geq m$ then $\mathbf{1 + ( n - m ) / m}$ else 0
computing the condition ( $\mathbf{n} \geq \mathbf{m}$ )
involves ( $\mathbf{n} \mathbf{- m}$ ) calculation

## Division (1-2)

The simplest predicate for testing numbers is IsZero so consider the condition.

## IsZero (minus n m)

But this condition is equivalent to $\mathrm{n} \leq \mathrm{m}$, not $\mathrm{n}<\mathrm{m}$.

$$
\text { minus } n m=m \text { pred } n=0 \quad \text { if } n \leq m
$$

If this expression is used
then the mathematical definition of division given above
is translated into function on Church numerals as,
minus $\mathrm{m} \mathrm{n}=\mathrm{n}$ pred m

```
minus 43 = 3 pred 4
    = (pred (pred (pred 4)))
    = (pred (pred 3))
    = (pred 2)
    = 1
```

| IsZero $($ minus 31$)=0$ | $3>1$ | 2 |
| :--- | :--- | :--- |
| IsZero $($ minus 32$)=0$ | $3>2$ | 1 |
| IsZero $($ minus 3 3) $=1$ | $3=3$ | 0 |
| IsZero $($ minus 34$)=1$ | $3<4$ | 0 |
| IsZero $($ minus 35$)=1$ | $3<5$ | 0 |

## Division (2-1)

```
n/m= if n\geqm}\mathrm{ then 1+(n-m)/m
    else 0
n/m= if n<m then 0
    else 1+(n-m)/m
(n-1)/m = if n\leqm then 0
else 1+(n-m)/m
```

If IsZero (minus n m ) is used
a single call to (minus $n \mathrm{~m}$ ) is possible
but the result gives the value of $(\mathbf{n - 1}) / m$.
(minus n m ) can be utilized
in computing $\mathbf{1 + ( n - m ) / m}$
correct condition: $\mathrm{n}<\mathrm{m}$
modified condition: $\mathrm{n} \leq \mathrm{m}$

## Division (2-2)

```
divide1 n m f x =
    (\lambdad. IsZero d (0 f x) (f (divide1 d m f x))) (minus n m)
                                    dl & n - m
IsZero d }\quad|\quad\mathrm{ IsZero (minus n m)
TRUE }\quad~\quad(\lambdax.\lambday.x)(0fx)(f (divide1 d m f x))
        = (0fx)
FALSE }\quad\square\quad(\lambdax.\lambday.y)(0fx)(f (divide1 d m fx))
    = (f (divide1 d m fx)
(n-1)/m = if n\leqm then 0
    else 1+(n-m)/m
```


## Division (2-3)

```
divide1 n m fx=
    (\lambdad. IsZero d (0 f x) (f (divide1 d m f x))) (minus n m)
divide1 9 3 fx
    = IsZero 6 (0 f x) (f (divide1 6 3 fx)) = (f (divide1 6 3 fx))
divide16 3fx
    = IsZero 3 (0 f x) (f (divide1 3 3 fx))=(f(divide1 3 3 fx))
divide1 3 3 fx
    = IsZero 0 (0 f x ) (f(divide1 0 3 fx)})=(0fx)=
```

$9 / 3=1+(9-3) / 3$
$=1+(1+(6-3) / 3)$
$=1+(1+(1+0 / 3))$
$=1+(1+(1+0))$
divide1 93 fx
$=(\mathrm{f}($ divide1 63 f ) $)$
$=(\mathbf{f}(\mathbf{f}($ divide1 $33 \mathbf{f x}))$ )
$=(f(f(0 f x)))$
$=(\mathbf{f}(\mathbf{f} \mathbf{x}))$

## Division (3-1)

add $\mathbf{1}$ to $\mathbf{n}$ before calling divide.

```
divide n = divide1 (succ n)
divide1 10 3 f x
    = IsZero 7 (0 f x) (f (divide1 7 3 fx)) = (f (divide1 7 3 fx))
divide1 7 3fx
    = IsZero 4 (0 f x) (f (divide1 4 3 fx))=(f(divide1 4 3fx))
divide143fx
    = IsZero 1 (0fx) (f (divide1 1 3 fx))=(f(divide1 1 3 fx))
divide1 1 3 fx
    = IsZero 0(0fx)(f(divide1 1 3 fx))=(0fx)=x
```

divide1 $93 \mathbf{f x}$
$=(\mathbf{f}($ divide1 73 f$)$ )
$=(\mathbf{f}(\mathbf{f}($ divide1 $43 \mathbf{f x})))$

$=(\mathbf{f}(\mathbf{f}(\mathbf{f})))$

## Division (3-2)

add $\mathbf{1}$ to $\mathbf{n}$ before calling divide.

```
divide n = divide1 (succ n)
```

divide1 is a recursive definition.

```
divide1 n m f x =
    (\lambdad. IsZero dl (0 f x) (f (divide1 d m fx))) (minus n m)
```


## Division (4)

The Y combinator may be used to implement the recursion.

Create a new function called div by;

In the left hand side divide1 $\rightarrow$ div c
In the right hand side divide1 $\rightarrow \mathbf{c}$
divide1 $n \mathrm{~m} \boldsymbol{f} \mathbf{x}=$

$\operatorname{div}=\lambda c . \lambda n . \lambda m . \lambda f . \lambda x$.

$\operatorname{div} c=\lambda n . \lambda m . \lambda f . \lambda x$.

https://en.wikipedia.org/wiki/Church_encoding

## Division (5)

```
Then,
    divide = \lambdan. divide1 (succ n)
where,
    divide1 = Y div succ = \lambdan. \lambdaf. \lambdax. f(n f x) Y
            = \lambdaf. (\lambdax. F (x x)) (\lambdax. f(x x)) 0
            = \lambdaf. \lambdax. x IsZero
            = \lambdan. N (\lambdax. False) true
true \equiv\lambdaa. \lambdab. a false \equiv\lambdaa. \lambdab. b
minus = \lambdam. \lambdan. n pred m pred
    = \lambdan. \lambdaf. \lambdax. n(\lambdag. \lambdah. h(gf)) (\lambdau. x) (\lambdau.u)
```


## Division (6)

Gives,

```
divide =
    \lambdan. ((\lambdaf. (\lambdax. x x) (\lambdax.f(x x)))
    (\lambdac. \lambdan. \lambdam. \lambdaf. \lambdax.
        (\lambdad. (\lambdan. n (\lambdax. (\lambdaa. \lambdab. b)) (\lambdaa. \lambdab . a))
            d ((\lambdaf. \lambdax. x)fx)(f(c dmfx))
        ((\lambdam. \lambdan. n (\lambdan. \lambdaf. \lambdax.n (\lambdag. \lambdah. h(gf))
        #)(\lambdau.x)(\lambdau.u))mmnm)
        M)
        #)
        #)(\lambdau.x)(\lambdau.u))mmnm)
```

```
Or as text, using \ for }\lambda\mathrm{ ,
```

```
divide =
(In.((lf.(lx.x x) (lx.f (x x)))
    (lc.In.Im.lf.lx.
        (ld.(In.n (lx.(la.lb.b)) (la.lb.a))
            d ((lf.lx.x) f x) (f (c d m f x))
        ((lm.ln.n (ln.lf.lx.n (lg.lh.h (g f))
                            (lu.x) (lu.u)) m) n m)
        ))
    ((ln.If.lx.f(nfx)) n))
```


## Division (6)

Gives,
divide $=\lambda n .((\lambda f .(\lambda x . x$ x) $(\lambda x . f(x x)))(\lambda c . \lambda n . \lambda m . \lambda f . \lambda x .(\lambda d .(\lambda n . n(\lambda x .(\lambda a . \lambda b . b))(\lambda a . \lambda b$. a) $) d((\lambda f . \lambda x . x) f x)(f(c d m f x)))((\lambda m . \lambda n . n(\lambda n . \lambda f . \lambda x . n(\lambda g . \lambda h . h(g f))(\lambda u . x)(\lambda u . u)) m)$


Or as text, using $\backslash$ for $\lambda$,
 (c d m f x ) ) ((lm.ln.n (ln.lf.lx.n (lg.lh.h (g f)) (lu.x) (lu.u)) m) n m)) ((ln.lf.lx.f (n f x)) n))

## Division (7)

For example, $9 / 3$ is represented by
divide (If.lx.f (f (f (f (f (f (f $\mathbf{f}))$ )) )) ) ) (If.lx.f (f (f x)))

Using a lambda calculus calculator,
the above expression reduces to 3 , using normal order.
(If.lx.f (f (f (x))))
https://en.wikipedia.org/wiki/Church_encoding

## Recursion (1-1)

## recursion:

the definition of a function using the function itself.

A function definition containing itself inside itself, by value,
leads to the whole value being of infinite size.

Other notations which support recursion natively overcome this by referring to the function definition by name.

## Recursion (1-2)

Lambda calculus cannot express this:
all functions are anonymous in lambda calculus, so we can't refer by name to a value which is yet to be defined, inside the lambda term defining that same value.
however, a lambda expression can receive itself as its own argument, for example in ( $\boldsymbol{\lambda} \mathbf{x} . \mathbf{x} \mathbf{x}$ ) $\mathbf{E}$.

Here E should be an abstraction, applying its parameter to a value to express recursion.

## Recursion (1-3)

Consider the factorial function $\mathbf{F}(\mathbf{n})$ recursively defined by

$$
F(n)=1, \text { if } n=0 ; \quad \text { else } n * F(n-1) .
$$

In the lambda expression which is to represent the function $\mathbf{F (} \mathbf{n}$ ), a parameter (typically the first one) will be assumed to receive the lambda expression itself as its value, so that calling it - applying it to an argument
will amount to recursion.

## Recursion (2-1)

Thus to achieve recursion,
the intended-as-self-referencing argument
(called $r$ here) must always be passed to itself
within the function body, at a call point:

```
G := \lambdar. \lambdan. (1, if n=0; else n > (r r (n-1))
    with rrx=Fx=Grx to hold,
    so r=G and
    F := G G = (\lambdax.x x) G
```


## Recursion (2-2)

```
F(n)=1, if n=0; else n }\timesF(n-1)
G := \lambdar. \lambdan.(1, if n = 0; else n > (r r (n-1)))
    with rrx=Fx=Grx to hold, so r=G and
F := G G = (\lambdax.x x) G
```


## Recursion (3-1)

The self-application achieves replication here, passing the function's lambda expression on to the next invocation as an argument value, making it available to be referenced and called there.

This solves it but requires re-writing each recursive call as self-application.

## Recursion (3-2)

We would like to have a generic solution, without a need for any re-writes:
$G:=\lambda r . \lambda n .(1$, if $n=0$; else $n \times(r(n-1)))$
with $\mathbf{r x}=\mathbf{F} \mathbf{x}=\mathbf{G r x}$ to hold, so $\mathbf{r}=\mathbf{G r} \mathbf{r}=\mathrm{FIXG}$ and

F := FIX G where FIX $\mathbf{g}:=(\mathbf{r}$ where $\mathrm{r}=\mathrm{gr} \mathbf{r})=\mathbf{g}($ FIX g$)$
so that
FIX G $=\mathbf{G}($ FIX G) $=(\lambda n .(1$, if $n=0 ;$ else $n \times(($ FIX G) $(n-1))))$

## Recursion (4)

Given a lambda term with first argument representing recursive call (e.g. G here), the fixed-point combinator FIX will return a self-replicating lambda expression representing the recursive function (here, F).

The function does not need to be explicitly passed to itself at any point, for the self-replication is arranged in advance, when it is created, to be done each time it is called.

## Recursion (5)

Thus the original lambda expression (FIX G) is re-created inside itself, at call-point, achieving self-reference.

In fact, there are many possible definitions for this FIX operator, the simplest of them being:

$$
\begin{aligned}
& Y:=\lambda g \cdot(\lambda x . g(x x))(\lambda x . g(x x)) \\
& Y g=(\lambda x . g(x x))(\lambda x . g(x x)) \\
& \\
& \\
& =g(\lambda x .(x x))(\lambda x . g(x x))
\end{aligned}
$$

## Recursion (6)

In the lambda calculus, $\mathbf{Y} \mathbf{g}$ is a fixed-point of $\mathbf{g}$, as it expands to:

```
Y g
(\lambdah.(\lambdax.h (x x)) (\lambdax.h (x x))) g
(\lambdax.g (x x)) (\lambdax.g (x x))
g ((\lambdax.g (x x)) (\lambdax.g (x x)))
g(Y g)
```


## Recursion (7)

Now, to perform our recursive call to the factorial function, we would simply call ( $\mathbf{Y} \mathbf{G}$ ) $\mathbf{n}$, where $\mathbf{n}$ is the number we are calculating the factorial of.

Given $\mathbf{n}=\mathbf{4}$, for example, this gives:

```
(Y G) }
G (Y G) 4
(\lambdar.\lambdan.(1, if n=0; else n > (r (n-1)))) (Y G) 4
(\lambdan.(1, if n=0; else n > ((Y G)(n-1)))) 4
1, if 4 = 0; else 4 > ((Y G)(4-1))
4 x (G (Y G) (4-1))
```


## Recursion (8)

```
4\times((\lambdan.(1, if n=0; else n > ((Y G) (n-1))))(4-1))
4\times(1, if 3=0; else 3 > ((Y G)(3-1)))
4\times(3 < (G (Y G) (3-1)))
4\times(3\times((\lambdan.(1, if n=0; else n \times ((Y G) (n-1)))) (3-1)))
4\times(3\times(1, if 2 = 0; else 2 }\times((Y\mathrm{ G)(2-1))))
4\times(3\times(2\times(G (Y G)(2-1))))
4\times(3\times(2\times((\lambdan.(1, if n=0; else n > ((Y G) (n-1))))(2-1))))
4\times(3\times(2\times(1, if 1 = 0; else 1 }\times((Y\textrm{G})(1-1))))
4\times(3\times(2\times(1\times(G (Y G)(1-1))))
4\times(3\times(2\times(1\times((\lambdan.(1, if n=0; else n \times ((YG)(n-1))))(1-1))))
4\times(3\times(2\times(1\times(1, if 0=0; else 0 < ((YG)(0-1)))))
4\times(3\times(2\times(1\times(1)))
```

24

## Recursion (9)

Every recursively defined function can be seen as a fixed point of some suitably defined function closing over the recursive call with an extra argument, and therefore, using $\mathbf{Y}$, every recursively defined function can be expressed as a lambda expression.

In particular, we can now cleanly define the subtraction, multiplication and comparison predicate of natural numbers recursively.

## References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

