Laurent Series and z-Transform - Geometric Series Combinations (A)

20200418 Sat

Copyright (c) 2016-2020 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Combinations of a and z -- common ratio in a geometric series

the same formula, different representations

Geometric Series

the same formula with different ROCs

$$
a^{0} z^{0}+a^{1} z^{1}+a^{2} z^{2}+\cdot \cdot
$$

anti-causal u(-n)

causal $u(n)$

$a z^{-1}$

geometric series
starting with
a unit term
non-shifted range $u(n), u(-n)$
geometric series
starting with
a non-unit term
shifted range
$u(n-1), u(-n-1)$
inversed common ratio

$a z$

$$
-\left(a^{1} z^{1}+a^{2} z^{2}+a^{3} z^{3}+\cdots\right)
$$

anti-causal u(-n-1)

$$
-\frac{a z^{-1}}{1-a z^{-1}} \quad|z|>a
$$

$$
-\left(a^{1} z^{-1}+a^{2} z^{-2}+a^{3} z^{-3}+\cdots\right)
$$

causal $u(n-1)$

$$
-\frac{a^{-1} z}{1-a^{-1} z} \quad|z|<a
$$

$-\left(a^{-1} z^{1}+a^{-2} z^{2}+a^{-3} z^{3}+\cdots\right)$
$a z^{\text {Ea }}$
$a^{[-1} z$

the same formula with different ROCs

geometric series
starting with
a unit term
non-shifted range $u(n), u(-n)$
geometric series
starting with
a non-unit term
shifted range u(n-1), u(-n-1)

Geometric Power Series Property (1)

Each representation has it own ROC (Region of Convergence)

common ratio$a z$	$\rightarrow\|z\|<a^{-1}$	ROC	
common	$a^{-1} z^{-1}$	$\longrightarrow\|z\|>a^{-1}$	ROC
ratio			
common $a^{-1} z$ $\|z\|<a$	ROC		
ratio			
common	$a z^{-1}$		$\|z\|>a$

Geometric Power Series Property (2)

Starting terms

geometric series			geometric series		
starting with			starting with		
a unit term			a non-unit term (common ratio)		
$z \quad$ causal	$\frac{1}{1-a z}$		$-\frac{a^{-1} z^{-1}}{1-a^{-1} z^{-1}}$	anti-causal	z^{-1}
z^{-1} anti-causal	$\frac{1}{1-a^{-1} z^{-1}}$		$-\frac{a z}{1-a z}$	causal	z
$z \quad$ causal	$\frac{1}{1-a^{-1} z}$		$-\frac{a z^{-1}}{1-a z^{-1}}$	anti-causal	z^{-1}
z^{-1} anti-causal	$\frac{1}{1-a z^{-1}}$		$-\frac{a^{-1} z}{1-a^{-1} z}$	causal	z
related to shifting					

Geometric Power Series Property (3)

Complementary Ranges

Shifted Ranges

right shfited range

Geometric Power Series Property (4)

$\mathrm{u}(\mathrm{n})$ complementary $\mathrm{u}(-\mathrm{n}-1)$ symmetric $\mathrm{u}(\mathrm{n}-1)$
$\mathrm{u}(-\mathrm{n})$ complementary $\mathrm{u}(\mathrm{n}-1)$ symmetric $\mathrm{u}(-\mathrm{n}-1)$

shifted

Geometric Power Series Property (5)

non-shifted range u(n), u(-n)
geometric series starting with
a unit term

shifted range
$u(n-1), u(-n-1)$
geometric series starting with
a non-unit term (common ratio)

u(n)	$\frac{1}{1-a z}$	complementary	$\frac{a^{\prime} z^{-1}}{1-a^{-1} z^{-1}}$	u(-n-1)
	1	complementary	$a z$	
u(-n)	$\overline{1-a^{-1} z^{-1}}$		1-az	$u(\mathrm{n}-1)$
	1	complementary	$a z^{-1}$	
u(n)	$\overline{1-a^{-1} z}$		$1-a z^{-1}$	$u(-n-1)$
	1	complementary	$a^{-1} z$	
u(-n)	$1-a z^{-1}$		$1-a^{-1} z$	$u(\mathrm{n}-1)$

$\frac{1}{1-a z}$	shifted	$-\frac{a^{-1} z^{-1}}{1-a^{-1} z^{-1}}$	
$u(n)$			
$u(n)$	$\frac{1}{1-a^{-1} z^{-1}}$	shifted	$-\frac{a z}{1-a z}$
$\frac{1}{1-a^{-1} z}$	shifted	$u(n-1)$	
$\frac{1}{1-a z^{-1}}$	shifted	$-\frac{a z^{-1}}{1-a z^{-1}}$	$u(-n-1)$
	$-\frac{a^{-1} z}{1-a^{-1} z}$	$u(n-1)$	

Common Ratio and ROC

left shifted range

$|z|<a$
$|z|>a$

right shifted range

$u(n-1)$

Each common ratio has two representations Sequences

Each representation has it own ROC
The two representations have
complementary ROC's

Ranges
complementary ROC's

Common Ratio

a z
right shifted

$a^{n} u(-n)$
left shifted

$$
\begin{array}{|c|}
\hline \frac{a^{\prime} z^{-1}}{1-a^{\prime} z^{-1}} \quad|z|>a^{-1} \\
a^{n} u(-n-1) \\
\hline
\end{array}
$$

* inverted relation is ignored

2 Sequences

a^{n}

Geometric Series Combinations (2)

* inverted relation is ignored

Common Ratio
$a^{(a)} z$
$\frac{1}{1-a^{-1} z}|z|<a$
$\boldsymbol{a}^{-n} u(n)$

2 Sequences

right shifted

$a^{-n} u(-n)$
left shifted

$$
\begin{array}{|c|}
\hline \frac{a z^{-1}}{1-a z^{-1}}|z|>a \\
a^{-n} u(-n-1)
\end{array}
$$

Shift Relations of Ranges

Right Shifted Range Relation

$u(n-1)$

$u(n)$
$u(n-1)$
$u(-n)$
Left Shifted Range Relation

Complementary Relations of Ranges

Complementary Range Relation

[Complementary Range \& Inverted Relation]

* inverted relation is ignored

$$
a^{0} z^{0}+a^{-1} z^{-1}+a^{-2} z^{-2}+\cdots
$$

$\boldsymbol{a}^{\boldsymbol{n}} u(-n)$

$$
\frac{a z}{1-a z} \quad|z|<a^{-1} \quad \begin{aligned}
& a^{1} z^{1}+a^{2} z^{2}+a^{3} z^{3}+\cdots \\
& a^{n} u(n-1)
\end{aligned}
$$

$$
\begin{array}{l|l|l|}
\hline a^{0} z^{0}+a^{1} z^{-1}+a^{2} z^{-2}+\cdots \\
a^{-n} u(n-1) & \\
\hline & \\
a^{-1} z^{1}+a^{-2} z^{2}+a^{-3} z^{3}+\cdots & \\
a^{-n} u(-n) & \\
\hline
\end{array}
$$

[Shifted Range Relation]

* inverted relation is ignored

$\frac{1}{1-a^{\prime} z^{\prime}}|z|>a^{\prime}$
$\left.\frac{a^{\prime}}{1-z^{\prime} z^{\mid c}} \right\rvert\,$

$$
a^{0} z^{0}+a^{-1} z^{-1}+a^{-2} z^{-2}+\cdots
$$

$$
a^{n} u(-n)
$$

$a^{a} z$
$\frac{1}{1-a^{-1} z} \quad|z|<a$
$a^{-1} z^{-1}+a^{-2} z^{-2}+a^{-3} z^{-3}+\cdots$
$a^{n} u(-n-1)$

\square	

$a^{-1 \pi} z$

$$
\frac{a^{-1} z}{1-a^{-1} z} \quad|z|<a
$$

$$
\begin{aligned}
& a^{-1} z^{1}+a^{-2} z^{2}+a^{-3} z^{3}+\cdots \\
& a^{-n} u(n-1)
\end{aligned}
$$

L
$a z^{\text {ET }}$

$$
\frac{1}{1-a z^{-1}} \quad|z|>a
$$

$$
\begin{aligned}
& a^{0} z^{0}+a^{1} z^{-1}+a^{2} z^{-2}+\cdots \\
& a^{-n} u(-n)
\end{aligned}
$$

$a z^{-1]}$
$\left.\frac{a z^{\prime}}{1-a z^{\prime}}|z|\right\rangle a$

$$
\frac{a z^{-1}}{1-a z^{-1}} \quad|z|>a
$$

$$
\begin{aligned}
& a^{\prime} z^{-1}+a^{2} z^{-2}+a^{3} z^{-3}+\cdots \\
& a^{-n} u(-n-1)
\end{aligned}
$$

each formula has two geometric series - two common ratios with inverse relation

each common ratio is associated with 2 different sequences (representations)

Making Shifted Sequences

Shifting Geometric Power Series Property (1)

* Z Right Shifted \square
$n \rightarrow n-1$

SHR.Rng	$u(n)$	$\longrightarrow u(n-1)$	
	$u(-n-1)$	\longrightarrow	$u(-n)$
			a^{n-1}
\boldsymbol{a}^{n}	\longrightarrow	a^{-n+1}	
a^{n}	\longrightarrow	a^{-1}	

(liz)
Left Shifted

$$
n \longrightarrow n+1
$$

$* a$	Left Shifted	SHL.Exp	\boldsymbol{a}^{n}	$\longrightarrow \boldsymbol{a}^{n+1}$
	Right Shifted	SHR.Exp	$\boldsymbol{a}^{-n} \longrightarrow \boldsymbol{a}^{-n+1}$	

$/ a$	SHR.Exp	$\boldsymbol{a}^{\boldsymbol{n}} \longrightarrow \boldsymbol{a}^{\boldsymbol{n - 1}}$		
Left Shifted	sHL.Exp	$\boldsymbol{a}^{-\boldsymbol{n}} \longrightarrow \boldsymbol{a}^{-n-1}$		
			\longrightarrow	

Shifting Geometric Power Series Property (2)

Shifting Geometric Power Series Property (3)

Causal Sequences

Causal Sequences

Anti-Causal Sequences

Shifting Geometric Power Series Property (4)

a^{-n}

Shifting exponential functions

Shifting of a Range

Left Shifting Sequences

Right Shifting Sequences

Original Sequence
$\left.\begin{array}{ll}\left.\text { 《(a } a^{0}, a^{1}, a^{2}, \cdots\right) \\ \left(\cdots, a^{-3}, a^{-2}, a^{-1}\right) \\ \left(\cdots, a^{-2}, a^{-1}, a^{0}\right) & \left(a^{1}, a^{2}, a^{3}, \cdots\right) \\ \left(a^{1}, a^{2}, a^{3}, \cdots\right) \\ \left(\cdots, a^{-2}, a^{-1}, a^{0}\right) 》\end{array}\right)$

Original Sequence

* no shift
* non-zero shift in * a new value introduced

* left shift
* zero shift in * the same set of values

Shifted Sequence

Making Shifted Sequences

making left shifted sequences

causal
the same set of slots left shifted set of samples

causal

left shifted set of slots
the same set of samples
anti-causal
the same set of slots
left shifted set of samples
anti-causal
left shifted set of slots
the same set of samples

making right shifted sequences

causal

the same set of slots
right shifted set of samples

causal

right shifted set of slots
the same set of samples
anti-causal
the same set of slots
right shifted set of samples
anti-causal
right shifted set of slots
the same set of samples

Making Shifted Sequences

making left shifted sequences

the same set of slots
left shifted set of samples

left shifted set of slots
the same set of samples
$u(n-1)$
$u(n)$

$u(-n-1)$
$u(-n-1)$

left shifted set of slots
the same set of samples
$u(-n)$
$u(-n-1)$

making right shifted sequences
the same set of slots
right shifted set of samples

right shifted set of slots
the same set of samples
un)
$u(n-1)$

the same set of slots
right shifted set of samples

right shifted set of slots
the same set of samples

$u(-n)$

Two Types of Left-Shifted Causal Sequences
the same fixed slots

$n=0$	$n=1$	$n=2$	$n=3$
$n=0$	$n=1$	$n=2$	$n=3$

a^{n}
a^{n+1}

a^{0}	a^{a}	a^{2}	a^{3}
a^{\prime}	a^{2}	a^{3}	a^{4}

left-shifted sequence (I)
left-shift samples

the same set of slots
right-shift pre-slot
$u(n-1)$
$u(n)$
a^{n}
a^{n+1}

	$n=1$	$n=2$	$n=3$	$n=4$
$n=0$	$n=1$	$n=2$	$n=3$	

fixed samples

a^{2}	a^{2}	a^{3}	a^{4}
a^{\prime}	a^{2}	a^{3}	a^{4}

left shifted set of slots
the same set of samples
left-shifted sequence (II)

Two Types of Left-Shifted Anti-Causal Sequences

left shift both slots

	疗	1=2	ne=
${ }^{n=2}$	n-3	n-2	n=

a^{n}	a^{-4}	a^{-3}	a^{-2}	a^{-1}
	a^{n+1}	a^{-3}	a^{-2}	a^{-1}
	a^{0}			
left-shifted sequence (I)				

left-shift samples

the same set of slots
 left shifted set of samples

left-shifted sequence (II)
left-shift post-slot

$\mathrm{u}(-\mathrm{n})$	-	$\mathrm{p}=2$	n=1	n=0	
- 1)	=3	n=2	n=1		

fixed samples

$|$| a^{-3} | a^{-2} | a^{-1} | a^{0} |
| :--- | :--- | :--- | :--- |
| a^{-3} | a^{-2} | a^{-1} | a^{0} |

left shifted set of slots
the same set of samples

Two Types of Right-Shifted Causal Sequences
right shift both slots

$$
\begin{aligned}
& u(n-1) \\
& u(n-1)
\end{aligned}
$$

$n=1$	$n=2$	$n=3$	$n=4$
$n=1$	$n=2$	$n=3$	$n=4$

a^{2}	a^{2}	a^{3}	a^{4}
a^{6}	a^{\prime}	a^{2}	a^{3}

right-shifted sequence (I)
right shift post-slot

$n=0$	$n=1$	$n=2$	$n=3$	
	$n=1$	$n=2$	$n=3$	$n=4$

$a^{n} a^{n-1}$
right shift post-samples

$$
\begin{array}{cccc}
a^{1} & a^{2} & a^{3} & a^{4} \\
a^{0} & a^{\prime} & a^{2} & a^{3}
\end{array}
$$

the same set of slots

Two Types of Right-Shifted Anti-Causal Sequence

the same fixed slots

right shift post-samples
$\begin{array}{llll}a^{-3} & a^{-2} & a^{-1} & a^{0} \\ a^{-4} & a^{-3} & a^{-2} & a^{-1}\end{array}$
the same set of slots
right shifted set of samples
a^{n}
a^{n-1}

a^{n}	a^{-4}	a^{-3}	a^{-2}	a^{-1}	
a^{n-1}		a^{-4}	a^{-3}	a^{-2}	a^{-1}

fixed samples

$$
\begin{array}{|l|l|l|l|}
a^{-4} & a^{-3} & a^{-2} & a^{-1} \\
\hline a^{-4} & a^{-3} & a^{-2} & a^{-1}
\end{array}
$$

right shifted set of slots
the same set of samples
right-shifted sequence (II)

