Differentiation of Continuous Functions

Young W Lim

Jul 22, 2024

Young W Lim Differentiation of Continuous Functions

Copyright (c) 2024 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.

(4月) (1日) (1日)

Based on Introduction to Matrix Algebra, Autar Kaw https://ma.mathforcollege.com

э

Forward Difference Approximation (1)

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{\Delta x \to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x}$$

for a finite $\Delta x > 0$

$$f'(x) \approx \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Forward Difference Approximation (2)

Backward Difference Approximation (1)

$$f'(x) \approx \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

for a finite $\Delta x > 0$, then $-\Delta x < 0$,

$$f'(x) \approx \frac{f(x - \Delta x) - f(x)}{-\Delta x}$$
$$= \frac{f(x) - f(x - \Delta x)}{\Delta x}$$

Young W Lim Differentiation of Continuous Functions

Backward Difference Approximation of the First Derivatives (1)

a backward difference approximation as you are taking a point backward from x.

To find the value of f'(x) at $x = x_i$, we may choose another point Δx behind as $x = x_{i-1}$.

$$f'(x) \approx \frac{f(x) - f(x - \Delta x)}{\Delta x}$$

$$f'(x_i) \approx \frac{f(x_i) - f(x_{i-1})}{\Delta x} \\ = \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}}$$

Taylor Series

$$f(x_{i+1}) = f(x_i) + f'(x_i)(x_{i+1} - x_i) + \frac{f''(x_i)}{2!}(x_{i+1} - x_i)^2 + \cdots$$

Substituting for convenience $\Delta x = x_{i+1} - x_i$

$$f(x_{i+1}) = f(x_i) + f'(x_i)(\Delta x) + \frac{f''(x_i)}{2!}(\Delta x)^2 + \cdots$$

 $f(x_{i+1})-f(x_i)-(+f'(x_i)(\Delta x)$

ъ.

э

Forward Difference Forward Difference

Derive Forward Difference Approximation from Taylor Series (1)

$$f(x_{i+1}) = f(x_i) + f'(x_i)(\Delta x) + \frac{f''(x_i)}{2!}(\Delta x)^2 + \cdots$$

$$f'(x_i)(\Delta x) = f(x_{i+1}) - f(x_i) - \frac{f''(x_i)}{2!}(\Delta x)^2 - \cdots$$

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{\Delta x} - \frac{f''(x_i)}{2!} (\Delta x)^1 - \cdots$$

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{\Delta x} + O(\Delta x)$$

Derive Forward Difference Approximation from Taylor Series (2)

$$f(x_{i+1}) = f(x_i) + f'(x_i)(\Delta x) + \frac{f''(x_i)}{2!}(\Delta x)^2 + \frac{f^{(3)}(x_i)}{3!}(\Delta x)^3 + \cdots$$

$$f(x_{i-1}) = f(x_i) - f'(x_i)(\Delta x) + \frac{f''(x_i)}{2!}(\Delta x)^2 - \frac{f^{(3)}(x_i)}{3!}(\Delta x)^3 \cdots$$

subtracting eq(2) from eq(1)

$$f(x_{i+1}) - f(x_{i-1}) = 2f'(x_i)(\Delta x) + \frac{2f^{(3)}(x_i)}{3!}(\Delta x)^3 + \cdots$$

$$2f'(x_i)(\Delta x) = f(x_{i+1}) - f(x_{i-1}) - \frac{2f^{(3)}(x_i)}{3!}(\Delta x)^3 - \cdots$$

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2(\Delta x)} - \frac{f^{(3)}(x_i)}{3!}(\Delta x)^2 - \cdots$$

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2\Delta x} + O((\Delta x)^2)$$

 Forward Difference
 Forward Difference

 Derive Forward Difference Approximation from Taylor Series
 (3)

Tangent Lines

• as $h \rightarrow 0$, $\mathbf{Q} \rightarrow \mathbf{P}$

and the secant line \rightarrow the tangent line

• the slope of the tangent line

$$m_{tangent} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{(a+h) - a}$$
$$= \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Young W Lim Differentiation of Continuous Functions

Ξ.

Young W Lim Differentiation of Continuous Functions

Ξ.