Differentiation of Continuous Functions

Young W Lim

Jul 22, 2024

Copyright (c) 2024 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.

Based on
Introduction to Matrix Algebra, Autar Kaw
https://ma.mathforcollege.com

Outline

(1) Forward Difference

- Forward Difference

Outline

(1) Forward Difference

- Forward Difference

Forward Difference Approximation (1)

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
\end{aligned}
$$

for a finite $\Delta x>0$

$$
f^{\prime}(x) \approx \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

Forward Difference Approximation (2)

Figure: forward difference approximation

Backward Difference Approximation (1)

$$
f^{\prime}(x) \approx \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

for a finite $\Delta x>0$, then $-\Delta x<0$,

$$
\begin{aligned}
f^{\prime}(x) & \approx \frac{f(x-\Delta x)-f(x)}{-\Delta x} \\
& =\frac{f(x)-f(x-\Delta x)}{\Delta x}
\end{aligned}
$$

Backward Difference Approximation (2)

Figure: backward difference approximation

Backward Difference Approximation of the First Derivatives

 (1)a backward difference approximation as you are taking a point backward from x.

To find the value of $f \prime(x)$ at $x=x_{i}$, we may choose another point Δx behind as $x=x_{i-1}$.

$$
f^{\prime}(x) \approx \frac{f(x)-f(x-\Delta x)}{\Delta x}
$$

$$
\begin{aligned}
f^{\prime}\left(x_{i}\right) & \approx \frac{f\left(x_{i}\right)-f\left(x_{i-1}\right)}{\Delta x} \\
& =\frac{f\left(x_{i}\right)-f\left(x_{i-1}\right)}{x_{i}-x_{i-1}}
\end{aligned}
$$

Taylor Series

$$
f\left(x_{i+1}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right)\left(x_{i+1}-x_{i}\right)+\frac{f^{\prime \prime}\left(x_{i}\right)}{2!}\left(x_{i+1}-x_{i}\right)^{2}+\cdots
$$

Substituting for convenience $\Delta x=x_{i+1}-x_{i}$

$$
\begin{gathered}
f\left(x_{i+1}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right)(\Delta x)+\frac{f^{\prime \prime}\left(x_{i}\right)}{2!}(\Delta x)^{2}+\cdots \\
f\left(x_{i+1}\right)-f\left(x_{i}\right)-\left(+f^{\prime}\left(x_{i}\right)(\Delta x)\right.
\end{gathered}
$$

Derive Forward Difference Approximation from Taylor Series

 (1)$$
\begin{gathered}
f\left(x_{i+1}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right)(\Delta x)+\frac{f^{\prime \prime}\left(x_{i}\right)}{2!}(\Delta x)^{2}+\cdots \\
f^{\prime}\left(x_{i}\right)(\Delta x)=f\left(x_{i+1}\right)-f\left(x_{i}\right)-\frac{f^{\prime \prime}\left(x_{i}\right)}{2!}(\Delta x)^{2}-\cdots \\
f^{\prime}\left(x_{i}\right)=\frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{\Delta x}-\frac{f^{\prime \prime}\left(x_{i}\right)}{2!}(\Delta x)^{1}-\cdots \\
f^{\prime}\left(x_{i}\right)=\frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{\Delta x}+O(\Delta x)
\end{gathered}
$$

Derive Forward Difference Approximation from Taylor Series

 (2)$$
\begin{aligned}
& f\left(x_{i+1}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right)(\Delta x)+\frac{f^{\prime \prime}\left(x_{i}\right)}{2!}(\Delta x)^{2}+\frac{f^{(3)}\left(x_{i}\right)}{3!}(\Delta x)^{3}+\cdots \\
& f\left(x_{i-1}\right)=f\left(x_{i}\right)-f^{\prime}\left(x_{i}\right)(\Delta x)+\frac{f^{\prime \prime}\left(x_{i}\right)}{2!}(\Delta x)^{2}-\frac{f^{(3)}\left(x_{i}\right)}{3!}(\Delta x)^{3} \cdots
\end{aligned}
$$

subtracting eq(2) from eq(1)

$$
\begin{aligned}
f\left(x_{i+1}\right)-f\left(x_{i-1}\right) & =2 f^{\prime}\left(x_{i}\right)(\Delta x)+\frac{2 f^{(3)}\left(x_{i}\right)}{3!}(\Delta x)^{3}+\cdots \\
2 f^{\prime}\left(x_{i}\right)(\Delta x) & =f\left(x_{i+1}\right)-f\left(x_{i-1}\right)-\frac{2 f^{(3)}\left(x_{i}\right)}{3!}(\Delta x)^{3}-\cdots \\
f^{\prime}\left(x_{i}\right) & =\frac{f\left(x_{i+1}\right)-f\left(x_{i-1}\right)}{2(\Delta x)}-\frac{f^{(3)}\left(x_{i}\right)}{3!}(\Delta x)^{2}-\cdots \\
f^{\prime}\left(x_{i}\right) & =\frac{f\left(x_{i+1}\right)-f\left(x_{i-1}\right)}{2 \Delta x}+O\left((\Delta x)^{2}\right)
\end{aligned}
$$

Derive Forward Difference Approximation from Taylor Series (3)

Tangent Lines

- as $h \rightarrow 0, \mathrm{Q} \rightarrow \mathrm{P}$ and the secant line \rightarrow the tangent line
- the slope of the tangent line

$$
\begin{aligned}
m_{\text {tangent }} & =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{(a+h)-a} \\
& =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
\end{aligned}
$$

