Exponential and Logarithmic Functions (1A)

Copyright (c) 2011-2014 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

A triangle and its slope

$$
\begin{aligned}
& y=f(x) \\
& \frac{f\left(x_{1}+h\right)-f\left(x_{1}\right)}{h}
\end{aligned}
$$

$$
\left(x_{1,} f\left(x_{1}\right)\right)
$$

Log Functions

$$
\begin{array}{ll}
\log _{b} x & b^{\square}=x \\
\log _{b} b & b^{\boxed{1}}=b \\
\log _{b} 1 & b^{\boxed{0}}=1 \\
\log _{b} b^{x} & b^{\boxed{\boxed{x}}}=b^{x}
\end{array}
$$

$$
\log _{b} x \quad b^{\boxed{y}}=x
$$

$$
\log _{b} x^{r}
$$

$$
b^{r x}=x^{r} \quad r \log _{b} x
$$

Inverse Relations

$$
\begin{aligned}
& x \rightarrow f(x) \longrightarrow e^{x} \\
& x \rightarrow g(x) \longrightarrow \log _{e} x
\end{aligned}
$$

$$
x \rightarrow f(x) \rightarrow e^{x} \rightarrow g(x) \longrightarrow \log _{e} e^{x}=x
$$

$$
x \rightarrow g(x) \longrightarrow \log _{e} x \rightarrow f(x) \longrightarrow e^{\log _{e} x}=x
$$

References

[1] http://en.wikipedia.org/
[2] M.L. Boas, "Mathematical Methods in the Physical Sciences"
[3] E. Kreyszig, "Advanced Engineering Mathematics"
[4] D. G. Zill, W. S. Wright, "Advanced Engineering Mathematics"

