Initial Value Problems (4A)

Copyright (c) 2011-2015 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Initial Value Problem

$$
\begin{gathered}
\frac{d^{n} y}{d x^{n}}=f\left(x, y, y^{\prime}, \cdots, y^{(n-1)}\right) \\
\begin{array}{ccc|c}
\begin{array}{l}
\text { on some interval I } \\
\text { containing } x_{o}
\end{array} \\
\frac{d^{n-1}}{d x^{n-1}} y\left(x_{0}\right) & & =k_{n-1} & \\
\vdots & \vdots & \vdots & \text { n Initial Conditions } \\
\frac{d}{d x} y\left(x_{0}\right) & =y^{\prime}\left(x_{0}\right) & =k_{1} & \text { at } x=x_{0}
\end{array} \\
\begin{array}{cll}
y\left(x_{0}\right) & =y\left(x_{0}\right) & =k_{0}
\end{array} \\
\text { IVP }
\end{gathered}
$$

Initial Value Problem - variable coefficients

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

Initial Value Problem - constant coefficients

Linear Equation

with constant coefficients
n Initial Conditions at $x=x_{0}$

Boundary Value Problem

$$
\begin{aligned}
& a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \\
& \left\{\begin{array} { l }
{ y (a) = y _ { 0 } } \\
{ y (b) = y _ { 1 } }
\end{array} \quad \left\{\begin{array} { l }
{ y ^ { \prime } (a) = y _ { 0 } } \\
{ y (b) = y _ { 1 } }
\end{array} \quad \left\{\begin{array} { l }
{ y (a) = y _ { 0 } } \\
{ y ^ { \prime } (b) = y _ { 1 } }
\end{array} \quad \left\{\begin{array}{l}
y^{\prime}(a)=y_{0} \\
y^{\prime}(b)=y_{1}
\end{array} \quad\right.\right.\right.\right. \text { Various Boundary Conditions }
\end{aligned}
$$

1st Order 2nd Order IVP's

$$
\begin{array}{cl}
\frac{d y}{d x}=f(x, y) & \begin{array}{l}
\text { on some interval I } \\
\text { containing } x_{0}
\end{array} \\
y\left(x_{0}\right)=k_{0} & \begin{array}{l}
1 \text { Initial Condition } \\
\text { at } x=x_{0}
\end{array}
\end{array}
$$

1st Order IVP

$$
\begin{array}{cl}
\frac{d y}{d x}=f\left(x, y, y^{\prime}\right) & \begin{array}{l}
\text { on some interval I } \\
\text { containing } x_{0}
\end{array} \\
y\left(x_{0}\right)=k_{0} & \begin{array}{l}
\text { at Initial Conditions } \\
\text { at } x=x_{0}
\end{array} \\
y^{\prime}\left(x_{0}\right)=k_{1} & \text { 2nd Order IVP }
\end{array}
$$

Existence of a unique solution : $1^{\text {st }}$ Order IVPs

$$
\begin{array}{cl}
\frac{d y}{d x}=f(x, y) & \begin{array}{l}
\text { on some interval I } \\
\text { containing } x_{0}
\end{array} \\
y\left(x_{0}\right)=k_{0} & \begin{array}{l}
1 \text { Initial Condition } \\
\text { at } x=x_{0}
\end{array}
\end{array}
$$

1st Order IVP

$$
\begin{aligned}
& \begin{array}{l}
f(x, y) \quad \text { and } \frac{\partial f}{\partial y} \\
R \quad \begin{array}{l}
a \leq x \leq b \\
c \leq y \leq d
\end{array} \\
R \leq y
\end{array} \\
& \hline \text { are continuous on } R \\
& \hline
\end{aligned}
$$

\longrightarrow
 The solution $y(x)$ of the IVP
 1) exists on the interval 10
 2) is unique
 $$
\begin{gathered} 10 \quad x_{0}-h \leq x \leq x_{0}+h \quad(h>0) \\ \text { contained in }[\mathbf{a}, \boldsymbol{b}] \end{gathered}
$$

Existence of a unique solution : Linear $1^{\text {st }}$ Order IVPs

$$
\begin{array}{cl}
a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) & \begin{array}{l}
\text { on some interval I } \\
\text { containing } x_{0}
\end{array} \\
y\left(x_{0}\right)=k_{0} & \begin{array}{l}
1 \text { Initial Condition } \\
\text { at } x=x_{0}
\end{array}
\end{array}
$$

Non-homogeneous Equation with variable coefficients

1st Order IVP

$$
a_{1}(x), a_{0}(x), \quad g(x)
$$

are all continuous on the interval I
and $a_{n}(x) \neq 0$

The solution $y(x)$ of the IVP

1) exists on the interval I
2) is unique

Existence of a unique solution : Linear $1^{\text {st }}$ Order IVPs

$$
\begin{array}{ll}
\frac{d y}{d x}+p(x) y=g(x) & \begin{array}{l}
\text { on some interval I } \\
\text { containing } x_{0}
\end{array} \\
y\left(x_{0}\right)=k_{0} & \begin{array}{l}
1 \text { Initial Condition } \\
\text { at } x=x_{0}
\end{array}
\end{array}
$$

Non-homogeneous Equation with variable coefficients

1st Order IVP

are all continuous on the interval I

The solution $y(x)$ of the IVP

1) exists on the interval I
2) is unique

Existence : Proof

$$
y^{\prime}+p(x) y=g(x) \quad y\left(x_{0}\right)=k_{0}
$$

$p(x)$ continuous on the interval I
$\longrightarrow \int_{x_{0}}^{x} p(s) d s \quad$ differentiable

$$
\begin{array}{cl}
\frac{d}{d x} \int_{x_{0}}^{x} p(s) d s=p(x) & (\mu(x) y)^{\prime}=\mu(x) g(x) \\
\mu(x)=e^{\int_{x_{0}}^{x} p(s) d s} & {[\mu(x) y]_{x_{0}}^{x}=\int_{x_{0}}^{x} \mu(s) g(s) d s} \\
\mu^{\prime}(x)=e^{\int_{x_{0}}^{x} p(s) d s} p(x) & \mu(x) y(x)-\mu\left(x_{0}\right) y\left(x_{0}\right)=\int_{x_{0}}^{x} \mu(s) g(s) d s \\
(\mu(x) y)^{\prime}=\mu^{\prime}(x) y+\mu(x) y^{\prime} & \mu(x) y(x)-y\left(x_{0}\right)=\int_{x_{0}}^{x} \mu(s) g(s) d s \\
=\mu(x) p(x) y+\mu(x) y^{\prime} & y(x)=\frac{1}{\mu(x)}\left\{y\left(x_{0}\right)+\int_{x_{0}}^{x} \mu(s) g(s) d s\right\}
\end{array}
$$

Uniqueness: Proof

$$
\begin{array}{ll}
y_{1}{ }^{\prime}+p(x) y_{1}=g(x) & y_{1}\left(x_{0}\right)=k_{0} \\
y_{2}{ }^{\prime}+p(x) y_{2}=g(x) & y_{2}\left(x_{0}\right)=k_{0} \\
& \\
w(x)=y_{1}(x)-y_{2}(x) & \\
w^{\prime}+p(x) w=0 & w(x)=C e^{-\int_{x p}^{x}(s) d s} \\
\mu(x)=e^{\int_{x, x}^{x} p(s) d s} & w\left(x_{0}\right)=y_{1}\left(x_{0}\right)-y_{2}\left(x_{0}\right)=k_{0}-k_{0}=0 \\
\mu(x) w^{\prime}+\mu(x) p(x) w=0 & C=0 \\
(\mu(x) w)^{\prime}=0 & w(x)=0 \\
\mu(x) w(x)=C & \\
w(x)=C / \mu(x) &
\end{array}
$$

$1^{\text {st }}$ Order IVP Counter examples (1)

$$
y^{\prime}=|y| \quad y(0)=y_{0} \quad \text { IVP }
$$

$$
y>0
$$

$$
y<0
$$

$$
y^{\prime}=y
$$

$$
y^{\prime}=-y
$$

$$
\int \frac{1}{y} d y=\int d x
$$

$$
\int \frac{1}{y} d y=-\int d x
$$

$$
\ln y=x+c
$$

$$
\ln y=-x+c
$$

$$
y=e^{x+c}
$$

$$
y=e^{-x+c}
$$

$$
y=C e^{x}
$$

$$
y=C e^{-x}
$$

$$
f(x, y)=f(y)=|y| \quad \text { continuous }
$$

$$
\frac{\partial f}{\partial y}=\frac{d f}{d y}
$$

discontinuous
over any interval containing $y=0$
a unique solution
for [y>0], [y = 0], [y < 0]
$f(x, y)$ and $\frac{\partial f}{\partial y}$ are continuous on R
R $\quad a \leq x \leq b$

The solution $y(x)$ of the IVP

1) exists on the interval 10 2) is unique

$$
\begin{gathered}
10 \quad x_{0}-h \leq x \leq x_{0}+h \quad(h>0) \\
\text { contained in }[\mathbf{a}, \boldsymbol{b}]
\end{gathered}
$$

$1^{\text {st }}$ Order IVP Counter examples (2)

$$
y^{\prime}=y^{1 / 3} \quad y(0)=0 \quad \text { IVP }
$$

$\int y^{-1 / 3} d y=\int d x$	$y^{2 / 3}=\frac{2}{3} x$
$\frac{3}{2} y^{2 / 3}=x+c$	$y^{2}=\left(\frac{2}{3} x\right)^{3}$
$y=0 \rightarrow$	$y= \pm\left(\frac{2}{3} x\right)^{3 / 2}$
$c=0$	

$$
f(x, y)=f(y)=y^{1 / 3} \quad \text { continuous }
$$

$$
\frac{\partial f}{\partial y}=\frac{d f}{d y}=\frac{1}{3 y^{2 / 3}} \quad \text { discontinuous }
$$

two possible solutions $+\{y=0\}$
$f(x, y)$ and $\frac{\partial f}{\partial y}$ are continuous on R
R $\quad \begin{aligned} & a \leq x \leq b \\ & c \leq y \leq d\end{aligned}$

The solution $y(x)$ of the IVP

1) exists on the interval 10 2) is unique

$$
\begin{gathered}
10 \quad x_{0}-h \leq x \leq x_{0}+h \quad(h>0) \\
\text { contained in }[\mathbf{a}, \boldsymbol{b}]
\end{gathered}
$$

$1^{\text {st }}$ Order IVP Counter examples (3)

$$
y^{\prime}=|y| \quad y(0)=y_{0} \quad \text { IVP }
$$

$$
y^{\prime}=y^{1 / 3} \quad y(0)=0 \quad \text { IVP }
$$

$\frac{\partial f}{\partial y} \quad \begin{aligned} & \text { discontinuous } \\ & \begin{array}{l}\text { over any interval } \\ \text { containing } y=0\end{array}\end{aligned}$

a unique solution
for $[y>0],[y=0],[y<0]$

$1^{\text {st }}$ Order IVP Counter examples (4)

Direction Field of (-x/y)

$$
\frac{d y}{d x}=-\frac{x}{y}
$$

2-d version of $F(x, y)$

$$
F(x, y)=-\frac{x}{y}
$$

3-d Plot of (- x/y)

$$
\frac{d y}{d x}=-\frac{x}{y} \quad F(x, y)=-\frac{x}{y} \quad \text { 3-d plot of } \mathrm{F}(\mathrm{x}, \mathrm{y})
$$

Existence of a unique solution

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

Non-homogeneous Equation with variable coefficients

$$
a_{n}(x), a_{n-1}(x), \cdots a_{1}(x), a_{0}(x), \quad g(x)
$$

are all continuous on the interval I
and $a_{n}(x) \neq 0$

The solution $y(x)$ of the IVP

1) exists on the interval I
2) is unique

Continuous Function

a continuous function is a function
for which, intuitively, "small" changes in the input result in "small" changes in the output.

Otherwise, a function is said to be a "discontinuous function".
A continuous function with a continuous inverse function is called a homeomorphism.

Differentiable Function

a differentiable function of one real variable is a function whose derivative exists at each point in its domain.
the graph of a differentiable function
must have a non-vertical tangent line at each point in its domain, be relatively smooth,
and cannot contain any breaks, bends, or cusps.

not differentiable at $\mathrm{x}=0$

a differentiable function

Differentiability and Continuity

If f is differentiable at a point x 0 ,
then f must also be continuous at $x 0$.
any differentiable function
must be continuous at every point in its domain.
The converse does not hold:
a continuous function need not be differentiable.

Check for Linear Independent Solutions

Homogeneous Linear n-th order differential equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

$$
\begin{aligned}
& y_{1}, y_{2}, \cdots, y_{n} \\
& n \text { linearly independent solutions } \\
& \left\{y_{1}, y_{2}, \cdots, y_{n}\right\} \\
& \text { fundamental set of solutions }
\end{aligned}
$$

$$
\begin{aligned}
& y=c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{n} y_{n} \\
& \text { general solution }
\end{aligned}
$$

The general solution for a homogeneous linear n-th order differential equation

References

[1] http://en.wikipedia.org/
[2] M.L. Boas, "Mathematical Methods in the Physical Sciences"
[3] E. Kreyszig, "Advanced Engineering Mathematics"
[4] D. G. Zill, W. S. Wright, "Advanced Engineering Mathematics"
[5] www.chem.arizona.edu/~salzmanr/480a

