Logic Background (1A)

Copyright (c) 2014 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

This work is based on 6.825:

Techniques in Artificial Intelligence - courses - MIT

https://courses.csail.mit.edu/6.825/

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

Proposition: etymology

From Old French, from Latin propositio ("a proposing, design, theme, case").

The content of an assertion

that may be taken as being **true** or **false** and is considered abstractly without reference to the linguistic sentence that constitutes the assertion.

Predicate: etymology

From Middle French predicate (French prédicat), from post-classical Late Latin praedicatum ("thing said of a subject"), a noun use of the neuter past participle of praedicare ("proclaim")

From Latin predicātus, perfect passive participle of praedicō, from prae + dicō ("declare, proclaim"), from dicō ("say, tell").

Proposition

In Aristotelian logic a proposition is a particular kind of sentence, one which affirms or denies a **predicate** of a subject.

In formal logic a proposition is considered as objects of a formal language.

A formal language begins with different types of symbols.

Predicate

(grammar) The part of the sentence (or clause) which states something about the <u>subject</u> or the <u>object</u> of the sentence.

The dog barked very loudly subject predicate

(logic) A term of a statement,
where the statement may be true or false
depending on whether the thing referred to
by the values of the statement's variables
has the property signified by that (predicative) term.

Propositional Logic

Propositional logic includes only

- operators and
- propositional constants

as symbols in its language.

The propositions in this language are

- propositional constants considered atomic propositions
- composite propositions
 recursive application of operators to propositions

Predicate Logic

Predicate logic include

- variables,
- operators,
- predicate and
- function symbols, and
- quantifiers

as symbols in their languages.

Logic

A Formal Language

Syntax – legal expressions

Semantics – the meaning of legal expressions

Proof System – a way of manipulating syntactic expressions

to get another syntactic expressions

Multiple Percepts → Conclusions

Current State, Operators → Next State Properties

Propositional Logic

Sentences (WFFs : Well Formed Formulas)

T and F are sentences

Propositional variables are sentences (A, B, C, ...)

If A and B are sentences, the followings are also sentences

(A), $\neg A$, $A \land B$, $A \lor B$, $A \rightarrow B$, $A \leftrightarrow B$

Precedence of Connectives

```
¬ highestΛ∨⇒⇔ lowest
```

```
AVB\Lambda C = AV(B\Lambda C)

A\Lambda B \Rightarrow CVD = (A\Lambda B) \Rightarrow (CVD)

A \Rightarrow BVC \Leftrightarrow D = (A \Rightarrow (BVC)) \Leftrightarrow D
```

Semantics

Meaning of a sentence : true or false

Interpretation: an assignment of true or false

to the propositional variables

 $\models_{i} \varphi$: Sentence φ is true in the interpretation i

 $\not\models_{_{\boldsymbol{i}}} \phi$: Sentence ϕ is true in the interpretation \boldsymbol{i}

Semantic Rules

 $\models_{i} \varphi$: Sentence φ is true in the interpretation i

 $\models_{\mathbf{i}} \varphi$: Sentence φ is true in the interpretation \mathbf{i}

$$\models_{i} T$$
 for all i

$$\not\models_{i} \mathbf{F}$$
 for all \mathbf{i}

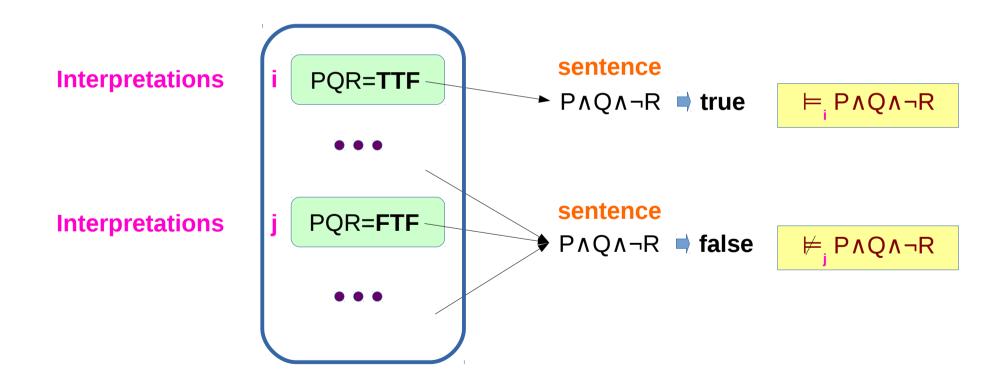
$$\models_{i} T$$
 for all i

$$\models_{,} \neg \phi$$
 iff $\not\models_{,} \phi$

$$\models_{,} \phi \wedge \psi \text{ iff } \models_{,} \phi \text{ and } \models_{,} \psi$$

$$\models_{i} \varphi v \psi \text{ iff } \models_{i} \varphi \text{ or } \models_{i} \psi$$

$$\models_{i} P$$
 iff $i(P) = T$


Since i is a mapping from variables to truth values, Look P up in i and return the truth value assigned to P

Semantics

Meaning of a sentence : true or false

Interpretation: an assignment of true or false

to the propositional variables (P, Q, R)

Valid, Satisfiable, Unsatisfiable

A sentence is valid iff

Its truth value is T in <u>all</u> interpretations

ex)
$$T$$
, $\neg F$, $P \lor \neg P$ (tautology: \top)

A sentence is **satisfiable** iff

Its truth value is **T** in <u>at least one</u> interpretation

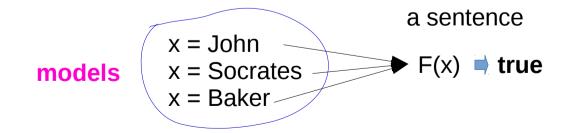
A sentence is unsatisfiable valid iff

Its truth value is **F** in <u>all</u> interpretations

ex)
$$\mathbf{F}$$
, $\neg \mathbf{T}$, $\mathsf{P} \land \neg \mathsf{P}$ (contradiction: \bot)

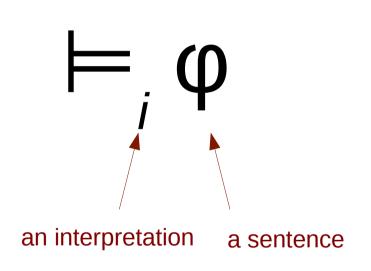
Models

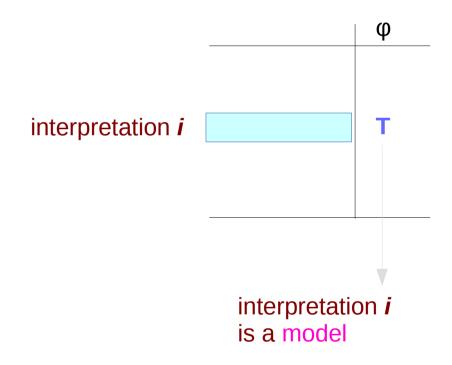
Semantics:


The relationship between sentences and interpretations

There are some set of interpretations that makes a sentence **true**

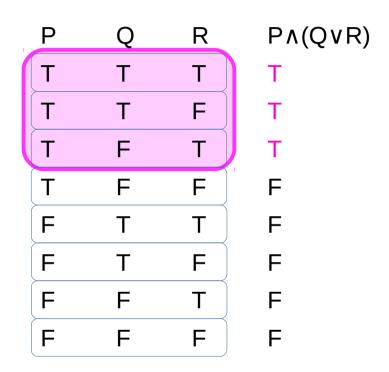
→ models of a sentence

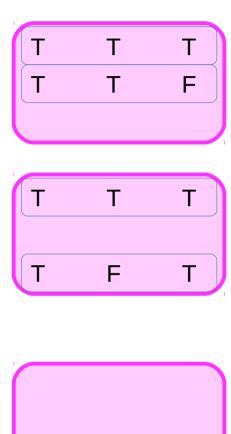

An interpretation is a **model** of a sentence if the **sentence** is **true** in that interpretation


An interpretation *i* is a model of a sentence φ *iff* $\models_{i} \varphi$

Models

An interpretation *i* is a model of a sentence φ *iff* $\models_i \varphi$

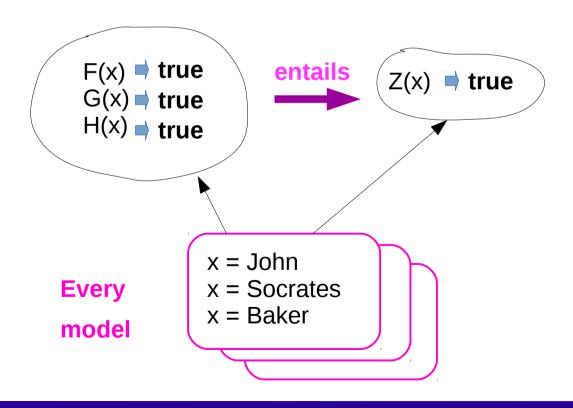




Models and Interpretations

models

8 interpretations

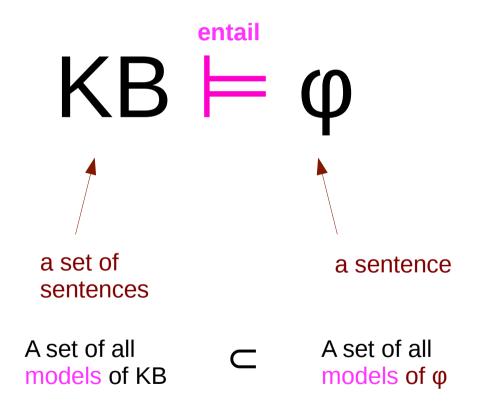


Entailment

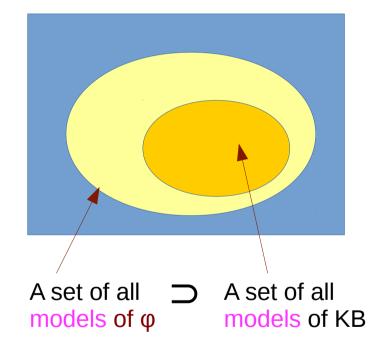
An interpretation i is a model of a sentence φ iff $\models_{i} \varphi$

A set of sentences KB entails a sentence ϕ iff every model of KB is also a model of ϕ

KB: Knowledge Base a set of sentences

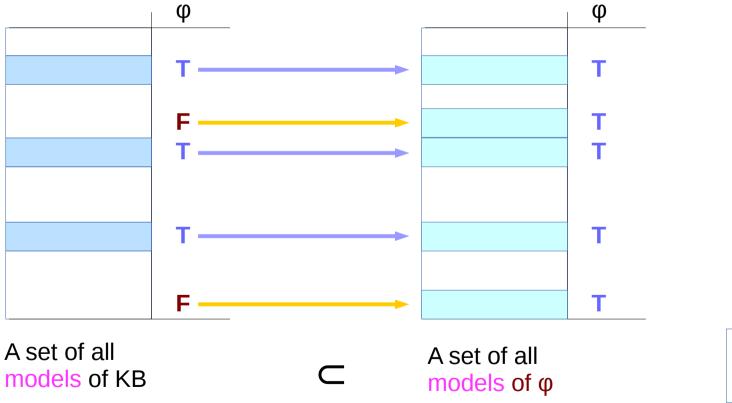

every model of KB

every model of each sentence in KB


the model of a sentence ϕ

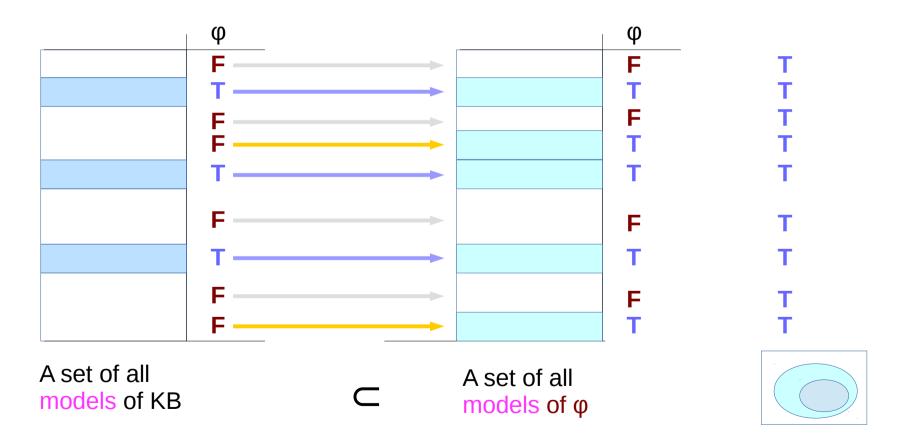
Models and Entailment

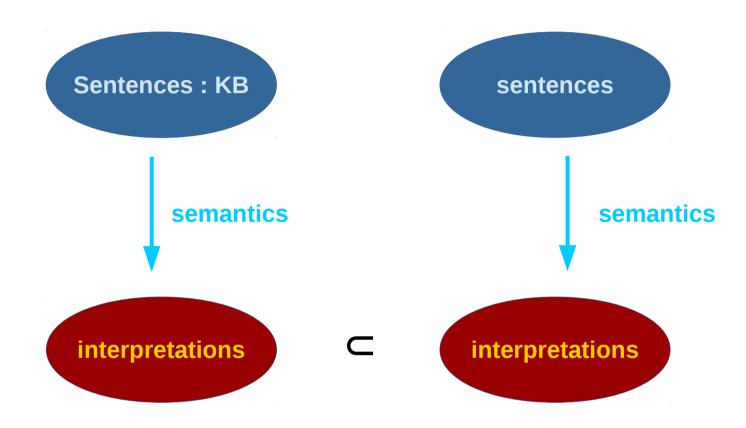
A set of sentences KB entails a sentence ϕ iff every model of KB is also a model of ϕ


U: A set of all possible interpretation

Truth Tables and Entailment

A set of sentences KB entails a sentence ϕ iff every model of KB is also a model of ϕ




Truth Tables and Entailment

A set of sentences KB entails a sentence ϕ iff every model of KB is also a model of ϕ

Entailment

References

[1]	en.wikipedia.org
[2]	en.wiktionary.org
[3]	U. Endriss, "Lecture Notes : Introduction to Prolog Programming"
[4]	http://www.learnprolognow.org/ Learn Prolog Now!
[5]	http://www.csupomona.edu/~jrfisher/www/prolog_tutorial
[6]	www.cse.unsw.edu.au/~billw/cs9414/notes/prolog/intro.html
[7]	www.cse.unsw.edu.au/~billw/dictionaries/prolog/negation.html
[8]	http://ilppp.cs.lth.se/. P. Nugues.` An Intro to Lang Processing with Perl and Prolo