Shortest Path Problem (4A)

Copyright (c) 2015-2018 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Shortest Path Problem

the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.

Types of Shortest Path Problems

The single-pair shortest path problem:
to find shortest paths from a source vertex v to a
destination vertex w in a graph
The single-source shortest path problem:
to find shortest paths from a source vertex v to all other vertices in the graph.

The single-destination shortest path problem: to find shortest paths from all vertices in the directed graph to a single destination vertex v. This can be reduced to the single-source shortest path problem by reversing the arcs in the directed graph.

The all-pairs shortest path problem:
to find shortest paths between every pair of vertices v , v^{\prime} in the graph.

Dijkstra's Algorithm Example Summary

O the initial node
O the current node

- the visited nodes
https://en.wikipedia.org/wiki/Dijkstra\'s_algorithm\#/media/File:Dijkstra_Animation.gif

Dijkstra's Algorithm Example (1)

https://en.wikipedia.org/wiki/Dijkstra\'s_algorithm\#/media/File:Dijkstra_Animation.gif

Dijkstra’s Algorithm Example (2)

Dijkstra's Algorithm Example (3)

https://en.wikipedia.org/wiki/Dijkstra\'s_algorithm\#/media/File:Dijkstra_Animation.gif

Dijkstra's Algorithm Example (4)

https://en.wikipedia.org/wiki/Dijkstra\'s_algorithm\#/media/File:Dijkstra_Animation.gif

Dijkstra's Algorithm Example (5)

https://en.wikipedia.org/wiki/Dijkstra\'s_algorithm\#/media/File:Dijkstra_Animation.gif

Hamiltonian Cycles

Dijkstra's Algorithm (1)

Let the node at which we are starting be called the initial node.
Let the distance of node Y be the distance from the initial node to Y.
Dijkstra's algorithm will assign some initial distance
values and will try to improve them step by step.

1. Mark all nodes unvisited.

Create a set of all the unvisited nodes called the unvisited set.
2. Assign to every node a tentative distance value:
set it to zero for our initial node and
to infinity for all other nodes.
Set the initial node as current.

Dijkstra's Algorithm (2)

3. Remove the current node from the unvisited set

For all the unvisited neighbors of the current node, calculate their tentative distances through the current node.

Compare the newly calculated tentative distance to the current assigned value and assign the smaller one.

For example, if the current node A is marked with a distance of 6 , and the edge connecting it with a neighbor B has length 2, then the distance to B through A will be 6 $+2=8$. If B was previously marked with a distance greater than 8 then change it to 8 . Otherwise, keep the current value.

Newly calculated tentative distance through the current node

Dijkstra's Algorithm (3)

4. After considering all of the neighbors of the current node, mark the current node as visited and remove it from the unvisited set. A visited node will never be checked again.
current node : chosen node with the smallest tentative distance from the unvisited set
current node : move to the visited set, after calculating the tentative distances of all the neighbors of the current node
consider all the neighbors of the current node

Dijkstra's Algorithm (4)

5. Move to the next unvisited node with the smallest tentative distances and repeat the above steps which check neighbors and mark visited.

E

Dijkstra's Algorithm (5)

5-a. If the destination node has been marked visited (when planning a route between two specific nodes)
or if the smallest tentative distance among the nodes in the unvisited set is infinity (when planning a complete traversal; occurs when there is no connection between the initial node and remaining unvisited nodes),
then stop. The algorithm has finished.
5-b. Otherwise, select the unvisited node that is marked with the smallest tentative distance, set it as the new current node, and go back to step 3.

Dijkstra's Algorithm - Pseudocode 1

```
function Dijkstra(Graph, source):
create vertex set Q
for each vertex v in Graph:
    dist[v] }\leftarrow INFINITY
    prev[v]}\leftarrow UNDEFINED
    add v to Q
dist[source] \leftarrow0
while Q is not empty:
    u}\leftarrowvertex in Q with min dist[u] // Node with the least distance
// will be selected first
    remove u from Q
    for each neighbor v of u:
        alt }\leftarrow\operatorname{dist[u] + length(u,v)
        if alt < dist[v]:
            dist[v] }\leftarrow\textrm{alt
            prev[v]}\leftarrow\textrm{u
// Initialization
// Unknown distance from source to v
// Previous node in optimal path from source
// All nodes initially in Q (unvisited nodes)
// Distance from source to source
// where v is still in Q. for each v in Q:
// A shorter path to v has been found
```


Dijkstra's Algorithm - Pseudocode 2

Procedure Dijkstra(G: weighted connected simple graph, with all positive weights)
$\left\{\mathbf{G}\right.$ has vertices $a=v_{0}, v_{1}, \ldots, v_{n}=z$ and length $w\left(v_{i}, v_{j}\right)$ where $w\left(v_{i}, v_{j}\right)=\infty$ if $\left\{v_{i}, v_{j}\right\}$ is not an edge in $\left.\mathbf{G}\right\}$
for $\mathrm{i}:=1$ to n
$\mathrm{L}\left(v_{i}\right):=\infty$
$\mathrm{L}(\mathrm{a}):=0$
$S:=\{ \}$
\{the labels are now initialized so that the label of a is 0 and
All other labels are ∞, and S is the empty set\}
while $z \notin S$
$u:=$ a vertex not in S with $L(u)$ minimal
$\mathrm{S}:=\mathrm{S} \cup\{u\}$
for all vertices v not in S
if $\mathrm{L}(u)+\mathrm{w}(u, v)<\mathrm{L}(u)$ then $\mathrm{L}(v):=\mathrm{L}(u)+\mathrm{w}(u, v)$
\{this adds a vertex to S with minimal label and
updates the labels of vertices not in S$\}$
return $L(z)\{L(z)=$ length of a shortest path from a to $z\}$

Dijkstra Algorithm Pseudocode 2 Example (0)

a	a	b	c	d	e	z
b	∞	4	2	∞	∞	∞
c	4	∞	1	5	∞	∞
d	2	1	∞	8	10	∞
d	∞	5	8	∞	2	6
e	∞	∞	10	8	∞	3
z	∞	∞	∞	6	3	∞

$$
w\left(u_{i}, u_{j}\right)
$$

Dijkstra Algorithm Pseudocode 2 Example (1)

$$
\begin{aligned}
& S=\{a\} \\
& L(a)+w(a, b)=0+4<L(b)=\infty \\
& L(a)+w(a, c)=0+2<L(c)=\infty \\
& L(a)+w(a, d)=0+\infty=L(d)=\infty \\
& L(a)+w(a, e)=0+\infty=L(e)=\infty \\
& L(a)+w(a, z)=0+\infty=L(z)=\infty
\end{aligned}
$$

Dijkstra Algorithm Pseudocode 2 Example (2)

$$
\begin{aligned}
& S=\{a, c\} \\
& L(c)+w(c, b)=2+1<L(b)=4 \\
& L(c)+w(c, d)=2+8<L(d)=\infty \\
& L(c)+w(c, e)=2+10<L(e)=\infty \\
& L(c)+w(c, z)=2+\infty=L(z)=\infty
\end{aligned}
$$

$$
P(a, c, b)<P(a, b)
$$

$P(a, c, b)<P(a, b)$

Dijkstra Algorithm Pseudocode 2 Example (3)

$$
\begin{aligned}
& S=\{a, c, b\} \\
& L(b)+w(b, d)=3+5<L(d)=10 \\
& L(b)+w(b, e)=3+\infty>L(e)=12 \\
& L(b)+w(b, z)=3+\infty=L(z)=\infty
\end{aligned}
$$

$$
P(a, c, b, d)<P(a, c, d)
$$

Dijkstra Algorithm Pseudocode 2 Example (4)

$$
\begin{aligned}
& S=\{a, c, b, d\} \\
& L(d)+w(d, e)=8+2<L(e)=12 \\
& L(d)+w(d, z)=8+6<L(z)=\infty
\end{aligned}
$$

$P(a, c, b, d, e)<P(a, c, e)$

Dijkstra Algorithm Pseudocode 2 Example (5)

$$
S=\{a, c, b, d, e\}
$$

$$
L(e)+w(e, z)=10+3<L(z)=14 \quad P(a, c, b, d, e, z)<P(a, c, b, d, z)
$$

Dijkstra Algorithm Pseudocode 2 Example (6)

$$
S=\{a, c, b, d, e, z\}
$$

References

[1] http://en.wikipedia.org/
[2]

