Monad P3 : Existential Types (1E)

1 Young Won Lim
1/29/22

Copyright (c) 2021 - 2016 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

2 Young Won Lim
1/29/22

mailto:youngwlim@hotmail.com

Based on

Haskell in 5 steps

https://wiki.haskell.org/Haskell in_5 steps

Existential Types (1D) 3 Young V\529|7|2m2

Unknown types at compile time

Existentials have always to do with
throwing type information away.

sometimes we want to work with types

that we don’t know at compile time.

the types typically depend on the state of external world:

the types could depend on user’s input,
on contents of a file to be parsed, etc.

Haskell’'s type system is powerful enough in these cases

https://markkarpov.com/post/existential-quantification.htmi

4 Young Won Lim

Existential Types (1D) 1/29/22

Preserving information about existentials

We want to work with values of types
that we_don’t know at compile time,
but at run time there are no types at all:
they have been erased!

then we_have to preserve some information
about existentially quantified type to make use of it,
otherwise we’ll be in the same position as implementers of id

having a value and only being able to pass it around

never doing anything meaningful with it.

There are various degrees of how much we might want to preserve:

https://markkarpov.com/post/existential-quantification.htmi

Existential Types (1D) 5 Young V\529|7|2m2

Parameterizing another type

We could have a in the type [a] existentially quantified.
There are still some things we could do with a value of this type.
we could compute length of the list.

So knowing nothing about a type is also an option sometimes

when it parameterizes another type and
we have parametrically-polymorphic functions

that work on that type.

In this case the set of possible types for a is open i.e. it can grow.

https://markkarpov.com/post/existential-quantification.htmi

Existential Types (1D) 6 Young V\529|7|2m2

Existentially quantified type with constraints

data Showable where data Something where
Showable :: forall a. Show a => a -> Showable Something :: forall a. a -> Something
We could assume that the existentially quantified type simple existentially quantified type variable

has certain properties (instances):

* pattern-matching on Showable will give us

the corresponding dictionary back.
» can do as much as the knowledge about the attached constraint
* the set of possible types for a is open

(additional new instances of Show can be defined).

https://markkarpov.com/post/existential-quantification.htmi

Existential Types (1D) 7 Young V\529|7|2m2

The first forall at the type signature

myPrettyPrinter forall a. *** (forall b. ***)

:: forall a. Show a =>

(forall b. Show b => b -> String) when myPrettyPrinter is used
-> Int a will be fixed

-> Bool but not b

->a

-> String the 1* argument is

a call back function

Only variables with foralls at the beginning of type signhature b -> String

will be fixed when the corresponding function is used
Other foralls deal with independent type variables:

https://markkarpov.com/post/existential-quantification.htmi

Existential Types (1D) 8 Young V\529|7|2m2

Two levels of foralls

myPrettyPrinter two levels of foralls (rank-2 type)
:: forall a. Show a => forall a. *** (forall b. ***)
(forall b. Show b => b -> String) -- call back function

-> Int in general such constructions
-> Bool are called rank-N types.
->a

-> String

https://markkarpov.com/post/existential-quantification.htmi

Existential Types (1D) 9 Young V\/1(;29I7|2m2

For consumers of a function

Both universally and existentially quantified variables
are introduced with forall.

for callers of myPrettyPrinter

* ais universally quantified

we can choose what the type will be

* b is existentially quantified
the callback function has to prepare to deal with any b
that will be given to the callback b -> String

https://markkarpov.com/post/existential-quantification.htmi

Existential Types (1D) 10

myPrettyPrinter
:: forall a. Show a =>
(forall b. Show b => b -> String)
-> Int
-> Bool
> a

-> String

callers of myPrettyPrinter provide
the call back b -> String
which must handle any b

Young Won Lim
1/29/22

For consumers of a function

print (myPrettyPrinter callback 123 True) myPrettyPrinter
:: forall a. Show a =>

Consumers of the expression 1
(forall b. Show b => b -> String)

-> Int
-> Bool
myPrettyPrinter fnitx = >a
V fn :: b -> String -> String
fn 0-8 ann i .- Int
Consumers of the expression 2 t:: Bool
X:a
str :: String

return str

https://markkarpov.com/post/existential-quantification.htmi

Existential Types (1D) 11 Young Wﬁggb'z?

In the body of a function

« for the callers of myPrettyPrinter, a is universally quantified
* in the body of myPrettyPrinter, a is existentially quantified

> the caller of myPrettyPrinter already has chosen the type

> A specific return type of the callback function b -> String

« for the callers of myPrettyPrinter, b is existentially quantified
* in the body of myPrettyPrinter, b is universally quantified
> b is the first argument of the call back function b -> String

> when the call back function is applied with b

the body of myPrettyPrinter can choose its concrete type

b -> String-> Int-> Bool-> a-> String

https://markkarpov.com/post/existential-quantification.htmi

myPrettyPrinter
:: forall a. Show a =>
(forall b. Show b => b -> String)
-> Int
-> Bool
> a

-> String

Universally quantified variable
the consumer choose

Existentially quantified variable

the choice is made for the consumer

Existential Types (1D) 12

Young Won Lim
1/29/22

Existential types and forall

forall r. :: forall a.
(forall a. a->r) (forall b. b -> String)
S
-=>a
for the callers in the body of for the callers in the body of
of the function the function of the function the function
universally existentially universally existentially
quantified r guantified r quantified a quantified a
existentially a universally a existentially universally
quantified quantified quantified guantified
callers of myPrettyPrinter provide
the call back function b -> String
which must handle any b

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential Types (1D) 13 Young V\529|7|2m2

Subtyping

subtyping (also subtype polymorphism)

Is a form of type polymorphism in which a subtype is a datatype
that is related to another datatype (the supertype)

by some notion of substitutability,

meaning that program elements,

typically subroutines or functions,

written to operate on elements of the supertype

can also operate on elements of the subtype.

https://en.wikipedia.org/wiki/Subtyping

Existential Types (1D) 14 Young V\/1(;29I7|2m2

Existential types and forall

Haskell doesn't have a notion of subtyping

Quantifiers can be considered as a tool for subtyping,

with a hierarchy going from universal to concrete to existential.

type forall a. a could be converted to any other type,
so it could be seen as a subtype of everything;

any type could be converted to the type exists a. a,

making that a supertype of everything.

forall a. a universal

i

any type concrete
exists a. a existential

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential Types (1D)

15

Young Won Lim

1/29/22

Existential types and forall

forall a. a is impossible

there are no values of type forall a. a except errors
exists a. a is useless

you canot do anything with the type exists a. a
but the analogy works on paper at least.

So, the basic idea is roughly that
universally quantified types describe

things that work the same for any type,
existentially quantified types describe

things that work with a specific but unknown type.

subtype of
forall a. a everything

impossible —
no such value

any type
useless —
cannot do anything

exists a. a supertype of
everything

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential Types (1D) 16

Young Won Lim
1/29/22

Restoring exact types

data EType a where
ETypeWord8 :: EType Word8
ETypelnt :: EType Int
ETypeFloat :: EType Float
ETypeDouble :: EType Double
ETypeString :: EType String

data Something where
Something :: EType a -> a -> Something

We could use GADTSs to_restore exact types of

existentially quantified variables later:

https://markkarpov.com/post/existential-quantification.htmi

Existential Types (1D) 17 Young V\529|7|2m2

How to make use of existentials

Matching on one of the data constructors of EType data EType a where

reveals a and after that we are free to do anything ETypeWord8 :: EType Word8
with the value of corresponding type ETypelnt :: EType Int
because we know it. ETypeFloat :: EType Float

ETypeDouble :: EType Double
With this approach the set of possible types for a ETypeString :: EType String

is limited and closed.

data Something where

It can be expanded Something
by changing the definition of EType though. :: EType a -> a -> Something

https://markkarpov.com/post/existential-quantification.htmi

Existential Types (1D) 18 Young V\529|7|2m2

Generalized Algebraic Data Type (1)

Generalised Algebraic Data Types

generalise ordinary algebraic data types

by allowing you to give the type sighatures of constructors explicitly.

data Term a where
Lit :: Int
Succ :: Term Int
IsZero :: Term Int
If :: Term Bool
Pair :Terma->Termb

-> Term Int

-> Term Int

-> Term Bool

-> Term a->Term a->Term a
-> Term (a,b)

https://downloads.haskell.org/~ghc/6.6/docs/html/users_guide/gadt.html

Existential Types (1D)

19

Young Won Lim
1/29/22

Generalized Algebraic Data Type (2)

Notice that the return type of the constructors is not always Term a,
as is the case with ordinary vanilla data types.

Now we can write a well-typed eval function for these Terms:

eval :: Terma->a

eval (Lit i) =i

eval (Succ t) =1+evalt

eval (IsZero t) =evalt==

eval (If b el e2) = if eval b then eval el else eval e2
eval (Pair el e2) = (eval el, eval e2)

https://downloads.haskell.org/~ghc/6.6/docs/html/users_guide/gadt.html

Existential Types (1D) 20

Young Won Lim
1/29/22

Existential Quantification

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Existential Types (1D) 21 Young vv1329|7|2m2

Existentials

Existential types, or
Existentials for short,

provide a way of

squashing a group of types
into one, single type.

https://en.wikibooks.org/wiki/Haskell/Existentially _quantified_types

Existential Types (1D) 292 Young V\529|7|2m2

Existentials

Existentials are part of GHC's type system extensions.

But not part of Haskell98
have to either compile with a command-line parameter of
-XExistentialQuantification,

or put at the top of your sources that use existentials.
{-# LANGUAGE EXxistentialQuantification #-}

https://en.wikibooks.org/wiki/Haskell/Existentially _quantified_types

Existential Types (1D) 23 Young Wﬁggb'z?

forall and type variables

The forall keyword is to explicitly bring fresh type variables into scope
type variables :
those variables that begin with a lowercase letter

the compiler allows any type to fill these variables

those variables that are universally quantified

https://en.wikibooks.org/wiki/Haskell/Existentially _quantified_types

Existential Types (1D) 24 Young V\/1(729I7|2r2

Type variables in a polymorphic function

Example: A polymorphic function
map :: (a ->b) ->[a] -> [b]

a lowercase type parameter
implicitly begins with a forall keyword,

Example: Explicitly quantifying the type variables
map :: forall a b. (a -> b) ->[a] -> [b]

two type declarations for map are equivalent

https://en.wikibooks.org/wiki/Haskell/Existentially _quantified_types

Existential Types (1D) 25 Young V\/1(729I7|2r2

Instantiating type variables

Example: A polymorphic function
map :: (a ->b) ->[a] -> [b]

Example: Explicitly quantifying the type variables
map :: forall a b. (a -> b) ->[a] -> [b]

instantiating the general type of map

to a more specific type

a=Int

b = String

(Int -> String) -> [Int] -> [String]

https://en.wikibooks.org/wiki/Haskell/Existentially _quantified_types

Existential Types (1D) 26 Young V\/1(729I7|2r2

Hiding a type variable

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Existential Types (1D) 27 Young vv1329|7|2r2

A rule for creating a new type

Normally when creating a new type
using type, newtype, data, etc.,
every type variable that appears on the right-hand side

must also appear on the left-hand side.

hewtype ST@= ST (State# s -> (# State# @ #))
Existential types are a way of escaping this rule

Existential types can be used for several different purposes.
But what they do is to hide a type variable on the right-hand side.

https://wiki.haskell.org/Existential_type

Existential Types (1D) 28 Young V\/1(729I7|2r2

Not specifying a type variable

Normally, any type variable appearing on the right
must also appear on the left:

Record Access Functions

data Worker x y = Worker {buffer :: b, input :: x, output :: v} buffer :: Worker xy -> b
This is an error, since the type b of the buffer Input :: Worker x y ->x
output :: Worker xy ->y

IS not specified on the right

(b is a type variable rather than a type)

but also is not specified on the left
(there's no b in the left part).

In Haskell98, you would have to write
data Workeri‘i bx v = Worker {buffer :: b, input :: x, output :: v}

https://wiki.haskell.org/Existential_type

Existential Types (1D) 29 Young V\g-(;gglylzmz

A type variable and a class

data Worker b x y = Worker {buffer :: b, input :: x, output :: v}

However, suppose that a Worker can use any type b

so long as it belongs to some particular class.
Then every function that uses a Worker will have a type like

foo :: (Buffer b) => Worker b Int Int

In particular, failing to write an explicit type signature (Buffer b)

will invoke the dreaded monomorphism restriction.

Using existential types, we can avoid this:

https://wiki.haskell.org/Existential_type

Existential Types (1D) 30 Young V\/1(729I7|2r2

Explicit types and Existential types

Explicit type signature :
data Worker b x y = Worker {buffer :: b, input :: x, output :: v}
foo :: (Buffer b) => Worker b Int Int

Existential type :
data Worker x y = forall b. Buffer b => Worker {buffer :: b, input :: x, output :: v}

foo :: Worker Int Int

The type of the buffer (Buffer) now does not appear
in the Worker type atall. Worker x y

https://wiki.haskell.org/Existential_type

Existential Types (1D) 31 Young Wﬁggb'z?

Monomorphism restriction

The monomorphism restriction is a counter-intuitive rule

in Haskell type inference.

If you forget to provide a type signature,
sometimes this rule will fill the free type variables

with specific types using type defaulting rules.

always less polymorphic than you'd expect,

so often this results in type errors

when you expected it to infer a perfectly sane type
for a polymorphic expression.

https://wiki.haskell.org/Existential_type

Existential Types (1D) 32 Young V\/1(729I7|2r2

Monomorphism restriction example

A simple example is plus = (+).

Without an explicit signature for plus,

the compiler will not infer the type for plus
(+) :: (Numa)=>a->a->a

but will apply defaulting rules to specify
plus :: Integer -> Integer -> Integer

When applied to plus 3.5 2.7, GHCi will then produce

the somewhat-misleading-looking error,
No instance for (Fractional Integer) arising from the literal ‘3.5'.

https://wiki.haskell.org/Existential_type

Existential Types (1D) 33 Young V\g-(;gglylzmz

Existential types and forall

func is a function with the same type for its input and output func :: existsa.a->a
so we could compose it with itself, for example. func True = False
func False = True
the only things you can do with something

that has an existential type are

the things you can do based on the non-existential parts of the type.

Similarly, given something of type exists a. [a]
we can find its length, or concatenate it to itself,

or drop some elements, or anything else we can do to any list.

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential Types (1D) 34 Young V\529|7|2m2

Existential types and forall

an example of an existentially quantified type
data Sum = forall a. Constructor a

forall a. (Constructor_a:: a -> Sum) = Constructor:: (exists a. a) -> Sum

data Sum =int | char | bool |

an example of a universally quantified type

data Product = Constructor (forall a. a)

data Product = int char bool

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential Types (1D) 35 Young V\/1(;29I7|2m2

Hiding a type variable (5)

 itis now impossible for a function
to demand a Worker having a specific type of buffer.

* the type of foo can now be derived automatically
without needing an explicit type signature.
(No monomorphism restriction.)

* since code now has no idea

what type the buffer function returns,

you are more limited in what you can do to it.

data Worker x y = forall b. Buffer b => Worker {buffer :: b, input :: x, output :: v}

foo :: Worker Int Int

https://wiki.haskell.org/Existential_type

Existential Types (1D) 36 Young V\g-(;gglylzmz

Hiding a type variable (6)

you will usually want a hidden type to belong to a specific class,
or you will want to pass some functions along
that can work on that type.

Otherwise you'll have some value belonging
to a random unknown type,
and you won't be able to do anything to it!

data Worker x y = forall b. Buffer b => Worker {buffer :: b, input :: x, output :: v}

foo :: Worker Int Int

https://wiki.haskell.org/Existential_type

Existential Types (1D) 37 Young V\/1(729I7|2r2

Hiding a type variable (7)

This illustrates creating a heterogeneous list,
all of whose members implement Show
and progressing through that list to show these items:

data Obj = forall a. (Show a) => Obj a

xs :: [Obj]
xs = [Obj 1, Obj "foo", Obj 'c']

doShow :: [Obj] -> String
doShow []=""

doShow ((Obj x):xs) = show x ++ doShow xs

With output: doShow xs ==> "1\"foo\"'c""

https://wiki.haskell.org/Existential_type

Existential Types (1D) 38 Young V\/1(729I7|2r2

Hiding a type variable (7)

In Haskell, an existential data type is one

that is defined in terms not of a concrete type,

but in terms of a quantified type variable,

introduced on the right-hand side of the data declaration.

https://blog.sumtypeofway.com/posts/existential-haskell.html

Existential Types (1D) 39 Young Wﬁggb'z?

Hiding a type variable (7)

an existential type provides

a well-typed "box" around an unspecified type.

The box does "hide" the type in a sense,
which allows you to make a heterogeneous list of such boxes,
ignoring the types they contain.

It turns out that an unconstrained existential pretty useless,

but a constrained type allows you to pattern match
to peek inside the "box" and make the type class facilities available:

https://blog.sumtypeofway.com/posts/existential-haskell.html

Existential Types (1D) 40 Young V\g-(;gglylzmz

Less specific types

Note: You can use existential types

to convert a more specific type

into a less specific one.

constrained type variables

There is no way to perform the reverse conversion!

https://wiki.haskell.org/Existential_type

Existential Types (1D) 41 Young Wﬁggb'z?

Existentials in terms of forall (1)

It is also possible to express existentials with RankNTypes

as type expressions directly (without a data declaration)

forall r. (forall a. Show a=>a ->r) ->r

(the leading forall r. is optional
unless the expression is part of another expression).

the equivalent type Obj :

data Obj = forall a. (Show a) => Obj a

https://wiki.haskell.org/Existential_type

Existential Types (1D) 42 Young V\/1(729I7|2r2

Existentials in terms of forall (2)

The conversions are:

fromObj :: Obj -> forall r. (forall a. Showa=>a->r)->r
fromObj (Obj x) k = k x

toObj :: (forall r. (forall a. Showa=>a->r)->r) -> Obj
toObj f = f Obj

https://wiki.haskell.org/Existential_type

Existential Types (1D) 43 Young V\/1(729I7|2r2

Heterogeneous Lists

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Existential Types (1D) 44 Young vv1329|7|2r2

Type hider

Suppose we have a group of values.
they may not be all the same type,
but they are all members of some class

thus, they have a certain property

It might be useful to throw all these values into a list.
normally this is impossible because lists elements
must be of the same type

(homogeneous with respect to types).

existential types allow us to loosen this requirement

by defining a type hider or type box:

https://en.wikibooks.org/wiki/Haskell/Existentially _quantified_types

Existential Types (1D)

data ShowBox = forall s. Show s => SB s
heteroList :: [ShowBox]
heteroList = [SB (), SB 5, SB True]

Young Won Lim
1/29/22

Heterogeneous list example (1)

data ShowBox = forall s. Show s => SB s -- type hider
heteroList :: [ShowBox]
heteroList = [SB (), SB 5, SB True]

[SB (), SB 5, SB True] calls the constructor
on three values of different types,

to place them all into a single list
virtually the same type for each one.

Use the forall in the constructor

SB :: forall s. Show s => s -> ShowBox.

https://en.wikibooks.org/wiki/Haskell/Existentially _quantified_types

Existential Types (1D) 46 Young V\/1(729I7|2r2

Heterogeneous list example (2)

data ShowBox = forall s. Show s => SB s -- type hider
heteroList :: [ShowBox]
heteroList = [SB (), SB 5, SB True]

When passing heteroList type parameters to a function
we cannot take out the values inside the SB

because their type might Bool. Int, Char, ...

But each of the elements can be

converted to a string via show.

In fact, that's the only thing we know about them.

https://en.wikibooks.org/wiki/Haskell/Existentially _quantified_types

Existential Types (1D) 47 Young V\/1(;29I7|2r2

Heterogeneous list example (3)

instance Show ShowBox where ShowBox data type made into
show (SB s) = show s an instance of the Show class
by this instance declaration:
In the definition of show for ShowBox

we don't know the type of s.

But we do know that the type is an instance of Show
due to the constraint on the SB constructor.

Therefore, it's legal to use the function show on s,
as seen in the right-hand side of the function definition.

https://en.wikibooks.org/wiki/Haskell/Existentially _quantified_types

Existential Types (1D) 48 Young V\g-(;gglylzmz

Heterogeneous list example (4)

instance Show ShowBox where

show (SB s) = show s

f:: [ShowBox] ->10 ()
f xs = mapM__ print xs

main = f heteroList

heteroList :: [ShowBox]
heteroList = [SB (), SB 5, SB True]

https://en.wikibooks.org/wiki/Haskell/Existentially _quantified_types

Existential Types (1D) 49 Young Wﬁggb'z?

Heterogeneous list example (5)

Example: Using our heterogeneous list

instance Show ShowBox where
show (SB s) = show s

f:: [ShowBox] ->10 ()

f xs = mapM__ print xs

main = f heteroList

Example: Types of the functions involved

print :: Show s =>s ->10 () -- print X = putStrLn (show x)
mapM_: (a->mb)->[a]->m ()

mapM__ print :: Show s =>[s] -> 10 ()

https://en.wikibooks.org/wiki/Haskell/Existentially _quantified_types

Existential Types (1D) 50 Young V\/1(729I7|2r2

mapM, mapM_, and map (1)

mapM maps an "action" (ie function of type a -> m b)
over a list [a] and gives you all the results as m [b]

mapM_ does the same thing,
but never collects the results, returning a m ().

If you care about the results
of your a -> m b function, use mapM.
If you only care about the effect,
but not the resulting value,
use mapM_, because it can be more efficient

https://stackoverflow.com/questions/27609062/what-is-the-difference-between-mapm-and-mapme-in-haskell/27609146

Existential Types (1D) 51 Young V\/1(;29I7|2r2

mapM, mapM_, and map (2)

Always use mapM__ with functions of the type a -> m (),
like print or putStrLn.
these functions return () to signify that only the effect matters.

If you used mapM, you'd get a list of () (ie [(), (), (D).
which would be completely useless

but waste some memory.

If you use mapM_, you would just get a (),
but it would still print everything.

https://stackoverflow.com/questions/27609062/what-is-the-difference-between-mapm-and-mapme-in-haskell/27609146

Existential Types (1D) 52 Young V\/1(729I7|2r2

mapM, mapM_, and map (3)

Normal map is something different:
it takes a normal function (a -> b)
instead of one using a monad (a -> m b).

This means that it cannot have any sort of effect

besides returning the changed list.

You would use it if you want to transform a list

using a normal function.

map_ doesn't exist because, since you don't have any effects,

you always care about the results of using map.

https://stackoverflow.com/questions/27609062/what-is-the-difference-between-mapm-and-mapme-in-haskell/27609146

Existential Types (1D) 53 Young V\/1(;29I7|2r2

Quantified types
as products and sums

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Existential Types (1D) 54 Young vv1329|7|2m2

Quantified Types as Products and Sums

A universally quantified type may be interpreted
as an infinite product of types.

a polymorphic function can be understood
as a product, or a tuple, of individual functions,

one per every possible type a.

To construct a value of such type, we have

to provide all the components of the tuple at once.

-- one formula generating an infinity of functions

https://en.wikibooks.org/wiki/Haskell/Existentially _quantified_types

Existential Types (1D) 55 Young V\g-(;gglylzmz

Quantified Types as Products and Sums

Example: Identity function
id :: foralla.a->a
ida=a

a polymorphic function can be understood
as a product, or a tuple, of individual functions,
one per every possible type a.
Int -> Int,
Double -> Double,
Char -> Char,
[Char] -> [Char],

https://en.wikibooks.org/wiki/Haskell/Existentially _quantified_types

Existential Types (1D) 56 Young V\/1(729I7|2r2

Quantified Types as Products and Sums

To construct a value of such type, we have
to provide all the components of the tuple at once.

in case of numeric types, one numeric constant
may be used to initialize many types at once.

Example: Polymorphic value
x :: forall a. Numa=>a

x=0

X may be conceptualized as a tuple consisting
of an Int value, a Double value, etc.

https://en.wikibooks.org/wiki/Haskell/Existentially _quantified_types

Existential Types (1D) 57 Young V\g-(;gglylzmz

Quantified Types as Products and Sums

Similarly, an existentially quantified type may be interpreted

as an infinite sum.

Example: Existential type
data ShowBox = forall s. Show s => SB s -- type hider

may be conceptualized as a sum:

Example: Sum type
data ShowBox = SBUnit | SBInt Int | SBBool Bool | SBiIntList [Int] | ...

https://en.wikibooks.org/wiki/Haskell/Existentially _quantified_types

Existential Types (1D) 58 Young V\/1(729I7|2r2

Quantified Types as Products and Sums

Example: Existential type
data ShowBox = forall s. Show s => SB s -- type hider

Example: Sum type
data ShowBox = SBUnit | SBInt Int | SBBool Bool | SBIntList [Int] | ...

to construct a value of this type,
we only have to pick one of the constructors
(SBUnit, SBInt, SBBool, SBIntList ...)

A polymorphic constructor SB

combines all those constructors into one.

https://en.wikibooks.org/wiki/Haskell/Existentially _quantified_types

Existential Types (1D) 59 Young vv1329|7|2r2

Quantification as a primitive

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Existential Types (1D)

60

Young Won Lim
1/29/22

Pair type example (1)

Existential quantification is useful
for defining data types that aren't already defined.

Suppose there was no such thing as pairs built into haskell.
Existential quantification could be used to define them.

https://en.wikibooks.org/wiki/Haskell/Existentially _quantified_types

Existential Types (1D) 61 Young Wﬁggb'z?

Pair type example (2)

{-# LANGUAGE EXxistentialQuantification, RankNTypes #-} Pair$\f->fab:: Pairab
newtype Pair a b = Pair (forall c. (a->b ->c) -> ¢) f:a->b->c
fab:c

makePair :: a->b ->Pairab
makePairab = Pair $\f->fab f is not yet defined

c can be any type (forall c)

Defining a data type c that is not already defined

https://en.wikibooks.org/wiki/Haskell/Existentially _quantified_types

Existential Types (1D) 62 Young V\/1(729I7|2r2

Pair type example (3)

newtype Pair a b = Pair (forall c. (a->b ->¢) ->¢)

every type variable that appears on the right-hand side

must also appear on the left-hand side.

Existential type hides a type variable ¢ on the right-hand side.

https://en.wikibooks.org/wiki/Haskell/Existentially _quantified_types

Existential Types (1D) 63 Young Wﬁggb'z?

Pair type example (4)

Pair$\f->fab::Pairab

newtype Pair a b = Pair (forall c. (a-> b ->c) -> ¢)

a
makePair :: a->b ->Pairab e c
b f —
-
[]

makePairab =Pair$\f->fab

Ired
A

-
z

4’ -
b makePair — Pairab

https://en.wikibooks.org/wiki/Haskell/Existentially _quantified_types

Existential Types (1D) 64 Young Wﬁggb'z?

Pair type example (5)

newtype Pair a b = Pair (forall c. (a-> b ->c) -> ¢)

makePair ::a->b ->Pairab
makePairab =Pair$\f->fab

using a record type with a single field

newtype Pair a b = Pair {runPair :: forall c. (a->b ->c) -> ¢}

runPair is an access function

takes an input of the type Paira b
returns an output of the type forallc. (a->b->c)->c

https://en.wikibooks.org/wiki/Haskell/Existentially _quantified_types

Existential Types (1D) 65 Young V\/1(729I7|2r2

Pair type example (6)

Pair$\f->fab::Pairab

In GHCI
A> :set -XExistentialQuantification a
“aﬂ

A> -X kNTypes — TP T

set -XrankNTypes b' b f c fa b
A> newtype Pair a b = Pair {runPair :: forall c. (a->b ->¢) -> ¢} g .
A> makePairab=Pair$\f->fab .!;? ; \J
A> pair = makePair "a" 'b’ g 12
A> :t pair .
pair :: Pair [Char] Char
A> runPair pair (\xy ->x) --unwrap (a->b ->c) -> c then apply
"a" (198 }] a }

. i S . Pairab

A> runPair pair (\xy ->y) --unwrap (a ->b ->c) -> c then apply ‘b’ b _mg,kePalr I

Ibl

makePair "a" ‘b’
Pair $\f->f "a" 'b' ::Pairab

https://en.wikibooks.org/wiki/Haskell/Existentially _quantified_types

Existential Types (1D) 66 Young V\g-(;gglylzmz

Pair type example (7)

Pair$\f->fab::Pairab
A> newtype Pair a b = Pair {runPair :: forall c. (a->b ->c) -> ¢}

“a” a
A> makePai =Pair$\f->f A “a” ‘b’
makePair a b = Pair $\ ab b' b f c fa b
A> pair = makePair "a" 'b’ E’Eﬁ, \J
™ . fa g
Pair $\f ->f"a" 'b"
\f : function itself f::a->b->c |
the result of applying the function *
an a .
.., b makePair Pairab
b P

makePair "a" ‘b’
Pair $\f->f "a" 'b' ::Pairab

https://en.wikibooks.org/wiki/Haskell/Existentially _quantified_types

Existential Types (1D) 67 Young V\/1(729I7|2r2

Pair type example (8)

Pair$\f->fab::Pairab
newtype Pair a b = Pair {runPair :: forall c. (a-> b -> ¢) -> c}

runPair :: Pairab->forallc.(a->b->c)->c¢

“aﬂ a
r b & 1
SN @
makePair ab = Pair $\f->fab > .
runPair makePairab=\f->fab -- unwrapping ""g.‘-? . \|
a g
makePair "a" 'b' = Pair $\f->f"a" 'b' \
runPair makePair "a" 'b' = \f -> f "a" 'b’ ‘
pair = makePair :: Pair [Char] Char
an a :
R R . Pairab
H - - - - WAl It b makepa"‘]
runPair pair (\xy->x)=(\xy->x)"a"'b T I Pl
runPair pair (\xy->y)=(\xy->y)"a"'b'
makePair "a" ‘b’
Pair $\f->f "a" 'b’ :: Pairab
https://en.wikibooks.org/wiki/Haskell/Existentially _quantified_types
Existential T 1D Young Won Lim
stential Types (1D) 68 1/29/22

Pair type example (9)

runPair pair (\xy->x) =(\xy->x)"a"'b'
runPair pair \xy->y)=(\xy->y)"a"'b'

runPair makePair "a" 'b' (\x y -> x)
(\x y _> x) llall Ibl
Ilall

runPair makePair "a" 'b' (\x y ->y)
(\x y _> y) llall Ibl
lbl

https://en.wikibooks.org/wiki/Haskell/Existentially _quantified_types

Existential Types (1D) 69 Young Wﬁggb'z?

Pair type example (10)

Pair$\f->fab:: Pairab Pair$\f->fab :: Pairab
(\x y ->x) (\xy->y)

“q” .
‘bs 1

a a
Ha” B Haﬂ .
b makePair Pairab b makePair Pairab
Ib’ Ib!
pair (\X y -> x) pair (\x y ->vy)
makePair "a" 'b' (\x y -> x) makePair "a" 'b' (\x y ->)
https://en.wikibooks.org/wiki/Haskell/Existentially _quantified_types
Existential Types (1D Young Won Lim
yp () 70 1/29/22

newtype and an access function

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Existential Types (1D) 71 Young vv1329|7|2m2

newtype can have a named function (1)

newtype Parser a = Parser { parse :: String -> Maybe (a,String) }
1) Atype named Parser.

2) A term level constructor of Parser’s named Parser.
The type of this (constructor) function is

Parser :: (String -> Maybe (a, String)) -> Parser a

You give it a function of the type
(String -> Maybe (a, String))
and it wraps it inside a Parser

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

Existential Types (1D) 72 Young V\/1(;29I7|2r2

newtype can have a named function (2)

newtype Parser a = Parser { parse :: String -> Maybe (a,String) }
3) A function named parse to remove the Parser wrapper and

get your function back. The type of this function is:
parse :: Parser a -> String -> Maybe (a, String)

A term level constructor named Parser

Parser :: (String -> Maybe (a, String)) -> Parser a

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

Existential Types (1D) 73 Young V\/1(729I7|2r2

newtype — constructor and unwrap functions (1)

Prelude> newtype
Parser a = Parser { parse :: String -> Maybe (a,String) }

Prelude> :t Parser
Parser :: (String -> Maybe (a, String)) -> Parser a

Prelude> :t parse

parse :: Parser a -> String -> Maybe (a, String)

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

Existential Types (1D) 74 Young V\/1(729I7|2r2

newtype — constructor and unwrap functions (2)

newtype Parser a = Parser { parse :: String -> Maybe (a,String) }

the term level constructor (Parser)

the function to remove the wrapper (parse)
Both can have arbitrary names

No need to match the type name.

It's common to write:

newtype Parser a = Parser { unParser :: String -> Maybe (a,String) }

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

Existential Types (1D) 75 Young V\/1(;29I7|2r2

newtype — constructor and unwrap functions (3)

newtype Parser a = Parser { unParser :: String -> Maybe (a,String) }

this name makes it clear unParser removes

the wrapper around the parsing function.
unParser :: Parser a -> String -> Maybe (a, String)

however, it is recommended that the type and constructor
have the same name when using newtypes.

(Parser, Parser)

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

Existential Types (1D) 76 Young V\/1(;29I7|2r2

newtype — instantiation

newtype Parser a = Parser { parser :: String -> Maybe (a,String) }

1) Parser is declared as a type with a type parameter a
2) can instantiate Parser by providing a parser function
p = Parser (\s -> Nothing)

3) a function name parser defined and

it is capable of running Parser’s.

unwrap the function
then apply the function

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

Existential Types (1D) 77 Young V\/1(729I7|2r2

hewtype — unwrapping

newtype Parser a = Parser { parser :: String -> Maybe (a,String) }

parser :: Parser a -> String -> Maybe (a, String)
parser (Parser (\s -> Nothing)) "my input”

(\s -> Nothing)) "my input”

Nothing

You are unwrapping the function using parse and
then calling the unwrapped function with "mylnput".

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

Existential Types (1D) 78 Young V\/1(729I7|2r2

newtype — without record syntax (1)

First, let's have a look at a parser newtype without record syntax:
newtype Parser' a = Parser' (String -> Maybe (a,String))

it stores a function String -> Maybe (a,String).

To run this parser, we will need to make an extra function:

runParser' :: Parser' a -> String -> Maybe (a,String)
runParser' (Parser' f)i=fi

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

Existential Types (1D) 79 Young V\/1(;29I7|2r2

newtype — without record syntax (2)

runParser' :: Parser' a -> String -> Maybe (a,String)
runParser' (Parser’' f) i =fi

runParser' (Parser' $\s -> Nothing) "my input".

But now note that, since Haskell functions are curried,

we can simply remove the reference to the input i to get:

runParser" :: Parser' -> (String -> Maybe (a,String))
runParser" (Parser' f) = f

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

Existential Types (1D) 80 Young V\/1(729I7|2r2

nhewtype — without record syntax (3)

runParser" :: Parser' -> (String -> Maybe (a,String))

runParser" (Parser' f) = f

This function is exactly equivalent to runParser’,
but you could think about it differently:

instead of applying the parser function to the value explicitly,

it simply takes a parser and extracts the parser function from it;
(Parser) -> f

however, thanks to currying, runParser"

can still be used with two arguments.

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

Existential Types (1D) 81 Young V\g-(;gglylzmz

newtype — with record syntax (1)

newtype Parser a = Parser { parse :: String -> Maybe (a,String) }
newtype Parser' a = Parser' (String -> Maybe (a,String))

difference : record syntax with only one field

this record syntax automatically defines a function

parse :: Parser a -> (String -> Maybe (a,String)),

which extracts the String -> Maybe (a,String) function

from the Parser a.

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

Existential Types (1D) 82 Young V\g-(;gglylzmz

newtype — with record syntax (2)

newtype Parser a = Parser { parse :: String -> Maybe (a,String) }

parse can be used with two arguments thanks to currying,

and this simply has the effect of running the function stored
within the Parser a.

equivalent definition to the following code:

newtype Parser a = Parser (String -> Maybe (a,String))

parse :: Parser a -> (String -> Maybe (a,String))
parse (Parser p)=p

https://stackoverflow.com/questions/60291263/why-the-newtype-syntax-creates-a-function

Existential Types (1D) 83 Young V\g-(;gglylzmz

Access functions in a record type (1)

data Person = Person { firstName ::/String

lastName ::|String return types of

age = Int access functions
height :: Float ,
phoneNo ::String
flavor 11 String

} deriving (Show)

ghci> :t flavor Person ::

flavor :: Person -> String the input type of
. . access functions
ghci> :t firstName et

firstName :: Person -> String

http://learnyouahaskell.com/making-our-own-types-and-typeclasses

Existential Types (1D) 84 Young Wﬁggb'z?

Access functions in a record type (2)

data Car = Car String String Int deriving (Show)

ghci> Car "Ford" "Mustang" 1967
Car "Ford" "Mustang" 1967

data Car = Car {company :: String,
model :: String,
year :: Int} deriving (Show)

ghci> Car {company="Ford", model="Mustang", year=1967}
Car {company = "Ford", model = "Mustang", year = 1967}

http://learnyouahaskell.com/making-our-own-types-and-typeclasses

Existential Types (1D) 85 Young V\g-(;gglylzmz

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

Existential Types (1D) 86 Young Wﬁggb'z?

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86

