
Young Won Lim
8/22/13

Pointers (1A)

Young Won Lim
8/22/13

 Copyright (c) 2011-2013 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

C++ Pointers 3 Young Won Lim
8/22/13

* and & Operator

* address

returns the value
that is stored at the
address

&a 0x2B8

& variable

a = 100

dataaddress

returns the address of a
location where the
variable‘s value is stored

&p 0x2B0 p =
0x2B8

dataaddress

&a 0x2B8 a = 100

 p 0x2B8

*p 100

C++ Pointers 4 Young Won Lim
8/22/13

Variable Initialization

int b = a ;

a can hold an integer
b can hold an integer

&a a 100

dataaddress

&b b 100

int a = 100 ;

a and b have the same
integer value

C++ Pointers 5 Young Won Lim
8/22/13

Pointer Variable Initialization

int * p = & a ;

p can hold an
address
p is initialized with
the address of the
integer variable a

&p p &a

dataaddress

&a a 100

int a = 100 ;

a and *p have the same
integer value, since
&a and p have the same
address

C++ Pointers 6 Young Won Lim
8/22/13

b a

Reference Variable Initialization (1)

int & b = a ;

b is of type “reference to int”

b’s address is initialized with
a’s address

b acts like an integer variable

b holds an integer

&a a 100

dataaddress

think the variable b
as an alias of a

int a = 100 ;

a and b have the same
integer value, since
&a and &b have the same
address

&b

&b = &a b = a

C++ Pointers 7 Young Won Lim
8/22/13

Reference Variable Initialization (2)

int & b = a ;

reference:
must be initialized
cannot be changed later on

uninitialization & reseat
 are not possible

int a = 100 ;

Reference is not like an
ordinary variable

b = c

&c c = 223

dataaddress

&b

reseat is not possible

int& b

&a int a

dataaddress

&b

C++ Pointers 8 Young Won Lim
8/22/13

Reference Variable Initialization (3)

int & b = a ;

int a = 100 ;

Reference is not like
an ordinary variable

change the state of the
referent

int& b

&a int a

dataaddress

&b

 b
&a int a

dataaddress

&b

the state of the referent

C++ Pointers 9 Young Won Lim
8/22/13

Call by Value

void func(int n);

int main (void)
{
 int a = 10;

printf(“a = %d \n”, a);
func (a);
printf(“a = %d \n”, a);

return 0;
}

void func (int n)
{

printf(“n = %d \n”, n);
n += 10;
printf(“n = %d \n”, n);

}

&a a=10

address value

&n n=a

+10

n is local to the function
func and exists while the
function is being called

the value of a is passed
through the parameter
variable n

C++ Pointers 10 Young Won Lim
8/22/13

Call by Reference – C Style

void func(int * n);

int main (void)
{
 int a = 10;

printf(“a = %d \n”, a);
func (&a);
printf(“a = %d \n”, a);

return 0;
}

void func(int * n)
{

printf(“*n = %d \n”, *n);
*n += 10;
printf(“*n = %d \n”, *n);

}

&a a=10

address value

&n n=&a

+10

n is local to the function
func and exists while the
function is being called

the address of a is passed
through the parameter
variable n

*n +=
10;

C++ Pointers 11 Young Won Lim
8/22/13

Call by Reference – C++ Style

void func(int& n);

int main (void)
{
 int a = 10;

printf(“a = %d \n”, a);
func (a);
printf(“a = %d \n”, a);

return 0;
}

void func(int& n)
{

printf(“n = %d \n”, *n);
n += 10;
printf(“n = %d \n”, *n);

}

&a a=10

address value

&n n=a

+10

n is local to the function
func and exists while the
function is being called

the address of a is passed
through the parameter
variable n

n += 10;

+10

Young Won Lim
8/22/13

References

[1] W Savitch, “Absolute C++”
[2] P.S. Wang, “Standard C++ with objected-oriented programming”
[3] http://www.cplusplus.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

