
1 Young Won Lim
2/18/20

Monad P3 : Mutable Variables (2A)

2 Young Won Lim
2/18/20

 Copyright (c) 2016 - 2020 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice/OpenOffice.

mailto:youngwlim@hotmail.com

Mutable Variables (2A) 3 Young Won Lim
2/18/20

Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

Mutable Variables (2A) 4 Young Won Lim
2/18/20

Functional purity is a defining characteristic of Haskell,

mutable state can be avoided by the followings

● the State monad allows us to keep track of state

in a convenient and functionally pure way

● efficient immutable data structures

like the ones provided by the containers

and unordered-containers packages

However, under some circumstances

using mutable state is just the most sensible option.

https://en.wikibooks.org/wiki/Haskell/Mutable_objects

Mutable State

Mutable Variables (2A) 5 Young Won Lim
2/18/20

In C, you use mutable variables to create loops (like a for loop).

In Haskell, you can use recursion

to re-bind argument symbols in a new scope

(call the function with different arguments to get different results).

 Problem: recursive factorial implementation

each function call creates stack frames

thus eventually memory is wasted

 Solution: Haskell supports optimized tail recursion.

Use an accumulator argument

https://www.scs.stanford.edu/14sp-cs240h/notes/00-getting-started/basics.html

Program without mutable state – tail recursion

Mutable Variables (2A) 6 Young Won Lim
2/18/20

Guards let you shorten function declarations

by declaring conditions in which a function occurs:

 pipe ("|") symbol introduces a guard.

Guards are evaluated top to bottom

 the first True guard wins.

 otherwise in the Haskell system Prelude evaluates to true

Bindings can end with where clauses

 where clauses can scope over multiple guards

 convenient for binding variables to use in guards

https://www.scs.stanford.edu/14sp-cs240h/notes/00-getting-started/basics.html

Program without mutable state – guards, where clauses

https://www.scs.stanford.edu/14sp-cs240h/notes/00-getting-started/basics.html

Mutable Variables (2A) 7 Young Won Lim
2/18/20

absolute x

 | x<0 = -x

 | otherwise = x

holeScore :: Int -> Int -> String

holeScore strokes par

 | score < 0 = show (abs score) ++ " under par"

 | score == 0 = "level par"

 | otherwise = show(score) ++ " over par"

 where score = strokes-par

https://www.futurelearn.com/courses/functional-programming-haskell/0/steps/27226

guards, where clause examples

Mutable Variables (2A) 8 Young Won Lim
2/18/20

Haskell is a purely functional language:

there are no side-effects and

all variables are immutable.

All variables are indeed immutable,

but there are ways to construct mutable references

where we can change what the reference points to.

https://blog.jakuba.net/2014/07/20/Mutable-State-in-Haskell/

Purely functional

Mutable Variables (2A) 9 Young Won Lim
2/18/20

Without side effects we wouldn’t be able to do much,

which is why Haskell gives us the IO monad.

In a similar manner we have many ways

to achieve mutable state in Haskell

 IORef in the IO monad mutable reference

 STRef in the ST monad mutable reference

 MVar

 TVar in Software Transactional Memory (STM)

https://blog.jakuba.net/2014/07/20/Mutable-State-in-Haskell/

Side effects and Mutable state

Mutable Variables (2A) 10 Young Won Lim
2/18/20

the functional programming

immutable variables

mutable variables are needed sometimes

1) simulate mutable variables

2) use real mutable variables

In either case you need a monad

in order to deal with mutability,

while staying purely functional.

http://wiki.haskell.org/Mutable_variable

Mutable Variables

Mutable Variables (2A) 11 Young Won Lim
2/18/20

simulating mutable variables

State monad

in Control.Monad.Trans.State

from the transformers package

using real mutable variables

IORef or STRef

 Data.IORef or Data.STRef or

Control.Concurrent.STM.TVar

from the STM package.

http://wiki.haskell.org/Mutable_variable

State Monad and IORef and STRef Mutable Variables

Mutable Variables (2A) 12 Young Won Lim
2/18/20

Mutability is not actually expressed through monads.

Monads are a much more general way of

composing computations. bind operator >>=

It happens to be useful in

composing computations for mutation.

https://www.quora.com/How-does-Haskell-express-mutability-through-monads

Mutable Variables

Mutable Variables (2A) 13 Young Won Lim
2/18/20

mutation is not really necessary in most computations

Versioning can almost always replace

(Single-threaded) mutation of data structures

create a new version of data

by making a clone of it,

which contains the mutated part.

https://www.quora.com/How-does-Haskell-express-mutability-through-monads

Versioning

Mutable Variables (2A) 14 Young Won Lim
2/18/20

Instead of mutating the head of a list, for instance,

you make a new list with the new head and the same tail.

But since all data structures are immutable in Haskell,

the creation of the new list does not involve any copying

the compiler will just use a pointer

to the existing (immutable) tail.

https://www.quora.com/How-does-Haskell-express-mutability-through-monads

Versioning and Pointers

Mutable Variables (2A) 15 Young Won Lim
2/18/20

Haskell's libraries contain all kinds of data structures

that can be easily modified without mutation.

They are called persistent data structures.

In Haskell, a function that would traditionally mutate its argument,

will explicitly return a new modified copy of argument

The following function takes an integer and returns an integer.

By the type it cannot do any side-effects whatsoever,

it cannot mutate any of its arguments.

square :: Int -> Int

square x = x * x

https://www.quora.com/How-does-Haskell-express-mutability-through-monads

Copying arguments

Mutable Variables (2A) 16 Young Won Lim
2/18/20

In computing, a persistent data structure is a data structure

that always preserves the previous version of itself

when it is modified.

Such data structures are effectively immutable,

as their operations do not (visibly) update the structure in-place,

but instead always yield a new updated structure.

https://www.quora.com/How-does-Haskell-express-mutability-through-monads

Persistent data structures

Mutable Variables (2A) 17 Young Won Lim
2/18/20

all data structures in the language are persistent,

as it is impossible to not preserve the previous state

of a data structure with functional semantics.

This is because any change to a data structure

that would render previous versions of a data structure invalid

would violate referential transparency.

In its standard library Haskell has

efficient persistent implementations for

Linked lists,

Maps (implemented as size balanced trees), and

Sets

https://www.quora.com/How-does-Haskell-express-mutability-through-monads

Persistent data structures in Haskell

Mutable Variables (2A) 18 Young Won Lim
2/18/20

An expression is called referentially transparent

if it can be replaced with its corresponding value

without changing the program's behavior.

This requires that the expression be pure,

that is to say the expression value must be

the same value for the same inputs

and its evaluation must have no side effects.

https://www.quora.com/How-does-Haskell-express-mutability-through-monads

Referential transparency

Mutable Variables (2A) 19 Young Won Lim
2/18/20

In imperative languages,

mutation is often hidden from the type system.

Instead of passing and returning a modifiable argument,

procedures secretly access external state (global variables) or

mutate the arguments that are passed to it by reference. call by reference

In Haskell, this is impossible: All functions are pure.

So if something has to be modified,

it must appear in the function's signature,

both as input (argument) and output (part of the return type).

https://www.quora.com/How-does-Haskell-express-mutability-through-monads

Argument to functions

Mutable Variables (2A) 20 Young Won Lim
2/18/20

This leads to the necessity of composing functions

that return those enriched values whose enrichment

is necessary to transmit the new state.

A naive approach to this would entail a lot of boilerplate code.

The monad instead provides a streamlined way of

organizing these repetitive tasks.

It allows you to define composition in one place

and then use it to create longer sequences

of stateful computations.

https://www.quora.com/How-does-Haskell-express-mutability-through-monads

Composing functions

s -> (s, a)

(s, a) : enriched values

Mutable Variables (2A) 21 Young Won Lim
2/18/20

Together with the syntactic sugar of the do notation,

function composition makes for a very concise programming style

that enables to imitate mutability.

mutations are encapsulated in the state data structure, state threading

and composition automatically combines

state modifications performed by individual functions.

The do-notation even hides the state from view.

But since the code is still pure, you may, for instance,

safely use it in parallel programming, without any fear of data races.

https://www.quora.com/How-does-Haskell-express-mutability-through-monads

Do notation

 main = do

 box <- newIORef (42 :: Int)

 num <- readIORef box

 print num

 writeIORef box 0

 num <- readIORef box

 print num

Mutable Variables (2A) 22 Young Won Lim
2/18/20

boilerplate code are

sections of code that have to be included

in many places with little or no alteration.

When using languages that are considered verbose,

the programmer must write a lot of code

to accomplish only minor functionality.

https://en.wikipedia.org/wiki/Boilerplate_code

Boiler plate code

Mutable Variables (2A) 23 Young Won Lim
2/18/20

Through state-threading. In Haskell,

there are only expressions, no statements.

Assume that expressions depend solely on their arguments.

This makes gettime() a little challenging.

What should it return?

And what should we pass it?

If we pass it nothing,

we can call clearly only gettime() once.

referential transparency

https://www.quora.com/How-does-Haskell-express-mutability-through-monads

State Threading

Mutable Variables (2A) 24 Young Won Lim
2/18/20

To resolve this difficulty, Haskell models side effects

by passing a state token;

every side-effecting function

accepts and receives a state token.

This is rather like

multi-view concurrency control in a database,

every query can be seen as

 taking place with a certain transaction ID and

also generating a new transaction ID.

a transaction ID is like a state token

https://www.quora.com/How-does-Haskell-express-mutability-through-monads

State tokens

s -> (s, a)

s : state token

Mutable Variables (2A) 25 Young Won Lim
2/18/20

getTime :: StateToken -> (StateToken, StructTime).

For generalized IO, the state token

is taken to be the state of the world and

is generated in such a way that each is unique;

this accounts for the type signature of the IO monad:

newtype IO a = IO (State# RealWorld -> (# State# RealWorld, a #))

https://www.quora.com/How-does-Haskell-express-mutability-through-monads

Side-effecting functions with a state token

Mutable Variables (2A) 26 Young Won Lim
2/18/20

The IO monad is a special form of the State monad

more limited scopes for state

– a particular memory pool, a particular map

What IO captures is

a function from State# RealWorld

to a tuple of a new state and a result. enriched value

(State# RealWorld: a low-level, unboxed type)

newtype IO a = IO (State# RealWorld -> (# State# RealWorld, a #))

https://www.quora.com/How-does-Haskell-express-mutability-through-monads

IO monad’ state function

Mutable Variables (2A) 27 Young Won Lim
2/18/20

Because each state token is unique,

and every side-effecting call requires one, it falls out that:

 Side-effecting calls can not be eliminated or interchanged:

to the compiler, every such call is unique

so there is no unfortunate optimization of side-effects

 Each call depends on the preceding one;

so there can be no reordering of these calls.

https://www.quora.com/How-does-Haskell-express-mutability-through-monads

Side-effecting function calls

s -> (s, a)

s -> (s, a)

s -> (s, a)

s -> (s, a)

Mutable Variables (2A) 28 Young Won Lim
2/18/20

Haskell is an expression oriented language;

and expressions depend on their arguments;

in general the compiler may

eliminate multiple identical calls or

reorder calls relative to one another.

However, when one expression depends on the output of the other,

the latter must wait for the first one to complete;

when two expressions are different (with different argument)

we can not remove one or the other.

a way to model arbitrary side-effects.

https://www.quora.com/How-does-Haskell-express-mutability-through-monads

Dependency and Uniqueness

s -> (s, a)

s -> (s, a)

s -> (s, a)

s -> (s, a)

Dependency
Uniqueness

Mutable Variables (2A) 29 Young Won Lim
2/18/20

Ensuring that one side-effecting function

wait for the token from the other

IO monad simplifies the state-threading

– users need not to pass the state token

– actually it is protected from tampering

This is done through a monad’s

 composition, >>= (bind).

https://www.quora.com/How-does-Haskell-express-mutability-through-monads

State threading through >>= bind operator

Mutable Variables (2A) 30 Young Won Lim
2/18/20

a monadic computation

getTime returns a StructTime

a function printTime prints a StructTime

then you may do so as follows:

 main = getTime >>= printTime

getTime :: IO StructTime

printTime :: StructTime -> IO ()

The bind operation >>= of IO takes care of

chaining the implicit state tokens.

https://www.quora.com/How-does-Haskell-express-mutability-through-monads

Composition example

Mutable Variables (2A) 31 Young Won Lim
2/18/20

The only place where mutation is really needed is

in concurrent programming, but even there it can be dealt

with using the IO monad. But that's a separate topic.

https://www.quora.com/How-does-Haskell-express-mutability-through-monads

Mutable Variables

Mutable Variables (2A) 32 Young Won Lim
2/18/20

For example, let's create a mutable reference and modify it:

 import Data.IORef

 main = do

 box <- newIORef (42 :: Int) :: IO (IORef Int)

 num <- readIORef box :: IO Int

 print num :: IO ()

 writeIORef box 0 :: IO ()

 num <- readIORef box :: IO Int

 print num :: IO ()

https://www.quora.com/How-does-Haskell-express-mutability-through-monads

Mutable Reference Example

Mutable Variables (2A) 33 Young Won Lim
2/18/20

some lines of this program after the do is

an expression of type IO ()

its evaluation will not do something,

like readin4g or writing the IORef,

but instead will return a command thunks

that the IO Monad can choose to execute.

The Haskell runtime

will take that command and

actually execute it.

https://www.quora.com/How-does-Haskell-express-mutability-through-monads

IO () type expression

Mutable Variables (2A) 34 Young Won Lim
2/18/20

two kinds of expressions:

writeIORef box 0 is of type IO ()

This expression does not change the IORef,

it returns the command to do that. thunks monadic computation

readIORef box is of type IO Int

it returns a command from whose execution thunks monadic computation

you can extract an Int.

https://www.quora.com/How-does-Haskell-express-mutability-through-monads

writeIORef and readIORef

Mutable Variables (2A) 35 Young Won Lim
2/18/20

num <- readIORef box :: IO Int

The <- operator returns an IO Int

whose execution does that extraction,

putting the Int in the named variable num

Actually, IO () and IO Int aren't different,

but () is just the type of a singleton value that is called Unit.

So you could do foo <- print 1 but it doesn't serve any purpose.

print 1 is of type IO (), its evaluation returns

a command and has no side effect.

https://www.quora.com/How-does-Haskell-express-mutability-through-monads

<- operator

Mutable Variables (2A) 36 Young Won Lim
2/18/20

IORef Usage

ref :: IORef a
ref <- newIORef 0

modifyIORef ref (+1)

readIORef ref

data IORef a
newIORef :: a -> IO (IORef a)
modifyIORef :: IORef a -> (a -> a) -> IO ()
readIORef :: IORef a -> IO a

http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-IORef.html

0

1

0 1(+1)

0

1

Mutable Variables (2A) 37 Young Won Lim
2/18/20

IORef Example

newIORef :: a -> IO (IORef a)
newIORef 0 :: IO (IORef a)
ref <- newIORef 0
ref :: IORef a

(+1) :: (a -> a)
modifyIORef :: IORef a -> (a -> a) -> IO ()
modifyIORef ref (+1) :: IO ()

readIORef :: IORef a -> IO a
readIORef ref :: IO a

ref <- newIORef 0
replicateM_ 1000000 $ modifyIORef ref (+1)
readIORef ref >>= print

http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-IORef.html

data IORef a

newIORef :: a -> IO (IORef a)
readIORef :: IORef a -> IO a
writeIORef :: IORef a -> a -> IO ()
modifyIORef :: IORef a -> (a -> a) -> IO ()
modifyIORef‘ :: IORef a -> (a -> a) -> IO ()

Mutable Variables (2A) 38 Young Won Lim
2/18/20

newtype IO a = IO (State# RealWorld -> (# State# RealWorld, a #))

newtype ST s a = ST (State# s -> (# State# s, a #))

newtype IORef a = IORef (STRef RealWorld a)

data STRef s a = STRef (MutVar# s a)

https://haskell-lang.org/tutorial/primitive-haskell

IO, ST Monads and IORef, STRef Variables

Mutable Variables (2A) 39 Young Won Lim
2/18/20

there is no parameter for the initial state as in State monad

ST uses a different notion of state to State;

State allows you to get and put the current state,

ST provides an interface to references of the type STRef

newSTRef :: a -> ST s (STRef s a)

readSTRef :: STRef s a -> ST s a

writeSTRef :: STRef s a -> a -> ST s ()

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

ST Monad – no initial state parameter

Mutable Variables (2A) 40 Young Won Lim
2/18/20

runST (do

 ref <- newSTRef 0 newSTRef init = ST $ \s1# -> (# s2#, STRef var# #)

 x <- readSTRef ref readSTRef (STRef var#) = ST $ \s2# -> (# State# s3#, val #)

 writeSTRef ref (x + 3) writeSTRef (STRef var#) val = ST $ \s3# -> (# s4#, () #)

 readSTRef ref) readSTRef (STRef var#) = ST $ \s4# -> (# State# s3#, val #)

https://en.wikibooks.org/wiki/Haskell/Mutable_objects

testST example – imperative style

Mutable Variables (2A) 41 Young Won Lim
2/18/20

data State# s

type definition without a data constructor

The primitive type State# represents

the state of a state transformer.

State# is the primitive, unlifted type of states.

It has one type parameter s,

State# RealWorld, or State# s,

where s is a type variable.

https://downloads.haskell.org/~ghc/7.2.2/docs/html/libraries/ghc-prim-0.2.0.0/GHC-Prim.html#t:State-35-

State# s

Mutable Variables (2A) 42 Young Won Lim
2/18/20

The only purpose of the type parameter s is

to keep different state threads separate.

It is represented by nothing at all.

It is parameterised on the desired type of state, (s)

which serves to keep states distinct threads distinct from one another.

https://downloads.haskell.org/~ghc/7.2.2/docs/html/libraries/ghc-prim-0.2.0.0/GHC-Prim.html#t:State-35-

State# s – purpose

Mutable Variables (2A) 43 Young Won Lim
2/18/20

But the only effect of this parameterisation is in the type system:

all values of type State# are represented in the same way.

Indeed, they are all represented by nothing at all!

The code generator “knows”

to generate no code,

and allocate no registers etc,

for primitive states.

https://downloads.haskell.org/~ghc/7.2.2/docs/html/libraries/ghc-prim-0.2.0.0/GHC-Prim.html#t:State-35-

State# s – effect

Mutable Variables (2A) 44 Young Won Lim
2/18/20

data RealWorld

type definition without a data constructor

RealWorld is deeply magical.

It is primitive, but it is not unlifted (hence ptrArg).

We never manipulate values of type RealWorld;

it's only used in the type system, to parameterise State#.

https://downloads.haskell.org/~ghc/7.2.2/docs/html/libraries/ghc-prim-0.2.0.0/GHC-Prim.html#t:State-35-

RealWorld

Mutable Variables (2A) 45 Young Won Lim
2/18/20

The type GHC.RealWorld is truly opaque:

No data constructor

there are no values defined of this type,

and no operations over it.

It is “primitive” in that sense -

but it is not unlifted!

Its only role in life is to be the type

which distinguishes the IO state transformer.

https://downloads.haskell.org/~ghc/7.2.2/docs/html/libraries/ghc-prim-0.2.0.0/GHC-Prim.html#t:State-35-

RealWorld – no values, no operations

Mutable Variables (2A) 46 Young Won Lim
2/18/20

the RealWorld tokens have type State# RealWorld,

which is yet another primitive type … of size 0.

So let us retrace our steps and consider the same examples

that we considered for Int# and Double#,

but now look at the corresponding translation for State# RealWorld.

We first considered the construction of a constant:

constant_State# :: () -> State# RealWorld

constant_State# _ = realWorld#

This translates to

Sp = Sp + 4;

jump (I32[Sp + 0]) ();

https://www.well-typed.com/blog/2014/06/understanding-the-realworld/

RealWorld

Mutable Variables (2A) 47 Young Won Lim
2/18/20

realWorld# is a value of type State# RealWorld

which is a token that acts as a reference to the real world.

(it is of size 0 and does not occupy any space

on the stack or heap.)

State# RealWorld values represent

the entire external runtime state of the program.

The "real world", as it were.

The main value in your program

receives a State# RealWorld value

that is threaded through the IO actions that compose it.

https://stackoverflow.com/questions/32672814/where-is-the-realworld-defined

realWorld# – a reference to the real world

Mutable Variables (2A) 48 Young Won Lim
2/18/20

The primitive State# RealWorld

RealWorld corresponds to the s parameter of our State monad

Actually, it’s two primitives, the type constructor State#,

and the magic type RealWorld which doesn’t have a # suffix

This is because ST monad also uses

a type constructor and a type parameter framework

http://blog.ezyang.com/2011/05/unraveling-the-mystery-of-the-io-monad/

State# RealWorld

Mutable Variables (2A) 49 Young Won Lim
2/18/20

You can treat State# RealWorld as a type

that represents a very magical value:

the value of the entire real world.

only the main function can receive a real world value,

and it then gets threaded through sequence of IO actions

http://blog.ezyang.com/2011/05/unraveling-the-mystery-of-the-io-monad/

State# RealWorld – type

Mutable Variables (2A) 50 Young Won Lim
2/18/20

MutVar# is a primitive type

It represents a mutable reference,

and is used by IORef and STRef.

In general, anything that ends in # is

an implementation detail of GHC.

Most of these operations have wrappers (like ST)

which are easier to use.

https://stackoverflow.com/questions/30448007/what-does-mutvar-mean

MutVar# s a

Mutable Variables (2A) 51 Young Won Lim
2/18/20

data MutVar# (a :: Type) (b :: Type) :: Type -> Type -> TYPE UnliftedRep

A MutVar# behaves like a single-element mutable array.

MutVar# s a

http://hackage.haskell.org/package/base-4.12.0.0/docs/GHC-Exts.html#t:MutVar-35-

MutVar# s a

Mutable Variables (2A) 52 Young Won Lim
2/18/20

GHC maintains a property that the kind of all inhabited types

(as distinct from type constructors or type-level data)

tells us the runtime representation of values of that type.

This datatype encodes the choice of runtime value.

Note that TYPE is parameterised by RuntimeRep;

this is precisely what we mean by the fact

that a type's kind encodes the runtime representation.

For boxed values (that is, values that are represented by a pointer),

a further distinction is made,

between lifted types (that contain ⊥), and unlifted ones (that don't).

http://hackage.haskell.org/package/base-4.12.0.0/docs/GHC-Exts.html#t:MutVar-35-

RuntimeRep

Mutable Variables (2A) 53 Young Won Lim
2/18/20

GHC is built on a raft of primitive data types and operations;

- primitive in the sense that

they cannot be defined in Haskell itself

- optimised to the efficient unboxed version

the primitive data types or operations unboxed

exported by the library GHC.Prim

have names ending in #

extensive use of unboxed types and unboxed tuples

https://downloads.haskell.org/~ghc/7.0.1/docs/html/users_guide/primitives.html

GHC.Prim

Mutable Variables (2A) 54 Young Won Lim
2/18/20

newtype IO a = IO (State# RealWorld -> (# State# RealWorld, a #))

newtype ST s a = ST (State# s -> (# State# s, a #))

newtype IORef a = IORef (STRef RealWorld a)

data STRef s a = STRef (MutVar# s a)

newtype State s a = State {runState :: s -> (s, a)}

https://stackoverflow.com/questions/18295211/signature-of-io-in-haskell-is-this-class-or-data

IO, IORef, ST, STRef, State Definitions

Mutable Variables (2A) 55 Young Won Lim
2/18/20

newtype State s a = State { runState :: s -> (a, s) }

instance Monad (State s) where

(>>=) :: State s a -> (a -> State s b) -> State s b

p >>= k = q where

 p' = runState p -- p' :: s -> (a, s)

 k' = runState . k -- k' :: a -> s -> (b, s)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

(State s) Monad State Monad

Mutable Variables (2A) 56 Young Won Lim
2/18/20

newtype ST s a = ST (STRep s a)

instance Monad (ST s) where

 {-# INLINE (>>=) #-}

 (>>) = (*>)

 (ST m) >>= k

 = ST (\s ->

 case (m s) of

 { (# new_s, r #) -> case (k r) of

 { ST k2 -> (k2 new_s) } })

type STRep s a = State# s -> (# State# s, a #)

http://hackage.haskell.org/package/base-4.12.0.0/docs/Control-Monad-ST.html

(ST s) Monad ST Monad

Mutable Variables (2A) 57 Young Won Lim
2/18/20

newtype IO a = IO (State# RealWorld -> (# State# RealWorld, a #))

instance Monad IO where

 return = returnIO

 (>>=) = bindIO

returnIO :: a -> IO a

returnIO x = IO $ \s -> (# s, x #)

bindIO :: IO a -> (a -> IO b) -> IO b

bindIO (IO m) k = IO $ \s -> case m s of (# new_s, a #) -> unIO (k a) new_s

http://blog.ezyang.com/2011/05/unraveling-the-mystery-of-the-io-monad/

IO Monad IO Monad

GHC.Types

System.IO

Mutable Variables (2A) 58 Young Won Lim
2/18/20

newtype IORef a = IORef (STRef RealWorld a)

STRef in the IO monad.

IORefs do not have the same safety guarantees

as STRefs about locality.

It's just a newtype wrapper around a specialized STRef RealWorld,

and the only thing it adds over STRef are some atomic operations.

https://stackoverflow.com/questions/5545517/difference-between-state-st-ioref-and-mvar

IORef Mutable Variable

Mutable Variables (2A) 59 Young Won Lim
2/18/20

In non-concurrent code, there's no good reason

not to use STRef s values in an ST s monad,

since they're more flexible --

you can run them in pure code with runST or,

if needed, in the IO monad with stToIO.

In concurrent code, there are more powerful abstractions,

like MVar and STM that are much easier

to work with than IORefs.

https://stackoverflow.com/questions/52467957/ioref-in-haskell

IORef and concurrency

Mutable Variables (2A) 60 Young Won Lim
2/18/20

IORef and STRef each provide the same functionality,

but for different monads.

IORef for IO Monad

STRef for ST Monad

Use IORef if you need a managed ref in IO,

and STRef if you need one in ST s.

newtype IORef a = IORef (STRef RealWorld a)

data STRef s a = STRef (MutVar# s a)

https://stackoverflow.com/questions/20439316/when-to-use-stref-or-ioref

IORef vs STRef

Mutable Variables (2A) 61 Young Won Lim
2/18/20

import Control.Monad.ST

import Data.STRef

exampleSTRef :: ST s Int

exampleSTRef = do

 counter <- newSTRef 0

 modifySTRef counter (+ 1)

 readSTRef counter

https://stackoverflow.com/questions/20439316/when-to-use-stref-or-ioref

IORef vs STRef – examples

import Control.Monad.ST

import Data.IORef

exampleIORef :: IO Int

exampleIORef = do

 counter <- newIORef 0

 modifyIORef counter (+ 1)

 putStrLn "im in ur IO monad so i can do I/O"

 readIORef counter

Mutable Variables (2A) 62 Young Won Lim
2/18/20

The ST monad is

● the restricted version of the IO monad.

● the less dangerous sibling of the IO monad, or IO computations,

where you can only read and write to memory.

https://stackoverflow.com/questions/5545517/difference-between-state-st-ioref-and-mvar

ST Monad – the restricted version of IO Monad

Mutable Variables (2A) 63 Young Won Lim
2/18/20

● STRefs have safety guarantees about locality

IORefs do not have

The API is made safe in side-effect-free programs,

as the rank-2 type parameter prevents values

that depend on mutable state from escaping local scope.

thus allows for controlled mutability

in otherwise pure programs.

https://stackoverflow.com/questions/5545517/difference-between-state-st-ioref-and-mvar

ST Monad – safety measures about locality

Mutable Variables (2A) 64 Young Won Lim
2/18/20

● ST allows arbitrary mutable state,

implemented as actual mutable memory on the machine.

● The mutable state of ST is very efficient

since it is hardware accelerated

● commonly used for mutable arrays and

other data structures that are mutated

are frozen

https://stackoverflow.com/questions/5545517/difference-between-state-st-ioref-and-mvar

ST Monad – mutable state

Mutable Variables (2A) 65 Young Won Lim
2/18/20

 Control.Monad.ST

 runST -- start a new memory-effect computation.

 STRefs: pointers to (local) mutable cells.

 ST-based arrays (such as vector) are also common.

https://stackoverflow.com/questions/5545517/difference-between-state-st-ioref-and-mvar

ST Monad – primary API

Mutable Variables (2A) 66 Young Won Lim
2/18/20

MVars : IORefs with locks

Like STRefs or IORefs, but with a lock attached,

for safe concurrent access from multiple threads.

MVars are a more general mechanism

for safely sharing mutable state.

use MVars or TVars (STM-based mutable cells),

over STRef or IORef. (specially in concurrent applications)

https://stackoverflow.com/questions/5545517/difference-between-state-st-ioref-and-mvar

ST Monad – MVars

Mutable Variables (2A) 67 Young Won Lim
2/18/20

MVars : IORefs with locks

IORefs and STRefs can be safe

in a multi-threaded (concurrent) applications

if atomicModifyIORef is used

(a compare-and-swap atomic operation).

https://stackoverflow.com/questions/5545517/difference-between-state-st-ioref-and-mvar

ST Monad – atomic swap operation

Mutable Variables (2A) 68 Young Won Lim
2/18/20

functions written using the ST monad

appear completely pure to the rest of the program.

Mutable variables STRefs allows programmers

to produce imperative code

where it may be impractical to write functional code,

while still keeping all the safety that pure code provides.

https://en.wikipedia.org/wiki/Haskell_features#ST_monad

ST Monad – imperative code enabled

Mutable Variables (2A) 69 Young Won Lim
2/18/20

The ST monad allows programmers

to write imperative algorithms in Haskell,

by using mutable variables (STRef's)

and mutable arrays (STArrays and STUArrays).

● code can have internal side effects

● destructively updating

mutable variables and arrays,

● containing these effects inside the monad.

https://en.wikipedia.org/wiki/Haskell_features#ST_monad

ST Monad advantage

Mutable Variables (2A) 70 Young Won Lim
2/18/20

While in place modifications of the n

of the type STRef s a are occurring,

something that would usually be considered a side effect,

it is all done in a safe way which is deterministic.

Memory modification in place is possible

While maintaining the purity of a function by using runST

https://wiki.haskell.org/Monad/ST

Imperative coding style using STRef Monad

Mutable Variables (2A) 71 Young Won Lim
2/18/20

a version of the function sum is defined,

in a way that imperative languages are used

a variable is directly updated, ….. imperative style

rather than a new value is formed and ….. functional style

passed to the next iteration of the function.

Imperative style code example

that takes a list of numbers, and sums them,

using a mutable variable:

https://en.wikipedia.org/wiki/Haskell_features#ST_monad

ST Monad – imperative code example

Mutable Variables (2A) 72 Young Won Lim
2/18/20

import Control.Monad.ST

import Data.STRef

import Data.Foldable

sumST :: Num a => [a] -> a

sumST xs = runST $ do

 n <- newSTRef 0

 for_ xs $ \x ->

 modifySTRef n (+x)

 readSTRef n

Imperative style code to sum elements of a list

https://en.wikibooks.org/wiki/Haskell/Mutable_objects

sumST example – imperative style

Mutable Variables (2A) 73 Young Won Lim
2/18/20

sum :: [a] -> a

sum [] = 0

sum (x:xs) = x + sum xs

product :: [a] -> a

product [] = 1

product (x:xs) = x * product xs

concat :: [[a]] -> [a]

concat [] = []

concat (x:xs) = x ++ concat xs

https://en.wikibooks.org/wiki/Haskell/Lists_III

sum example – functional style

Mutable Variables (2A) 74 Young Won Lim
2/18/20

The State Monad : a model of mutable state

The State monad is a purely functional environment

for programs with state, with a simple API:

 get

set the result value to the state and

leave the state unchanged.

 put

set the result value to () and

set the state value. … mutable

Documentation in the mtl package.

https://stackoverflow.com/questions/5545517/difference-between-state-st-ioref-and-mvar

State Monad – APIs

Mutable Variables (2A) 75 Young Won Lim
2/18/20

The State monad is commonly used

when needing state in a single thread of control.

(not concurrent)

It does not actually use mutable state in its implementation.

Instead, the program is parameterized by the state value

(i.e. the state is an additional parameter to all computations).

The state only appears to be mutated in a single thread ….. put

(and cannot be shared between threads).

https://stackoverflow.com/questions/5545517/difference-between-state-st-ioref-and-mvar

State Monad – the parameterized state

Mutable Variables (2A) 76 Young Won Lim
2/18/20

Conceptually, the difference is in the API.

State can be thought of as

an ST with a single, implicit reference cell.

Alternately, ST can be thought of as

a State which manipulates a store of values.

https://mail.haskell.org/pipermail/haskell/2007-May/019540.html

State and ST

Mutable Variables (2A) 77 Young Won Lim
2/18/20

newtype ST s a = ST (State# s -> (# State# s, a #))

newtype State s a = State {runState :: s -> (s, a)}

https://stackoverflow.com/questions/18295211/signature-of-io-in-haskell-is-this-class-or-data

ST and State Definitions

Mutable Variables (2A) 78 Young Won Lim
2/18/20

 newtype State s a = State

 { runState :: forall r. ReaderT (STRef r s) (ST r) a }

 runState :: State s a -> s -> (a,s)

 runState m s0 = runST (do

 r <- newSTRef s0

 a <- runReaderT (unState m) r

 s <- readSTRef r

 return (a,s))

https://mail.haskell.org/pipermail/haskell/2007-May/019540.html

State in terms of ST (1)

Mutable Variables (2A) 79 Young Won Lim
2/18/20

 instance Monad (State s) where

 return a = State (return a)

 m >>= f = State (unState m >>= unState . f)

 instance MonadState s (State s) where

 get = State (ask >>= lift . readSTRef)

 put x = State (ask >>= \s -> lift (writeSTRef s x))

https://mail.haskell.org/pipermail/haskell/2007-May/019540.html

State in terms of ST (2)

Mutable Variables (2A) 80 Young Won Lim
2/18/20

newtype ST s a = ST (State# s -> (# State# s, a #))

newtype State s a = State {runState :: s -> (s, a)}

https://stackoverflow.com/questions/18295211/signature-of-io-in-haskell-is-this-class-or-data

ST and State Definitions

Mutable Variables (2A) 81 Young Won Lim
2/18/20

Assume we have a Store ADT with this interface:

 data Store r

 data STRef r a

 withStore :: (forall r. Store r -> a) -> a

 newRef :: a -> Store r -> (STRef r a, Store r)

 readRef :: STRef r a -> Store r -> a

 writeRef :: STRef r a -> a -> Store r -> Store r

(The 'r' parameter is to make sure that references are only used with

the Store that created them. The signature of withStore effectively

gives every Store a unique value for r.)

https://mail.haskell.org/pipermail/haskell/2007-May/019540.html

ST in terms of State (1)

Mutable Variables (2A) 82 Young Won Lim
2/18/20

 newtype ST r a = ST { unST :: State (Store r) a } deriving Monad

 runST :: (forall r. ST r a) -> a

 runST m = withStore (evalState (unST m))

 newSTRef :: a -> ST r (STRef r a)

 newSTRef a = ST $ do

 s <- get

 let (r,s') = newRef a s

 put s'

 return r

https://mail.haskell.org/pipermail/haskell/2007-May/019540.html

ST in terms of State (2)

Mutable Variables (2A) 83 Young Won Lim
2/18/20

 readSTRef :: STRef r a -> ST r a

 readSTRef r = ST $ gets (readRef r)

 writeSTRef :: STRef r a -> a -> ST r ()

 writeSTRef r a = ST $ modify (writeRef r a)

https://mail.haskell.org/pipermail/haskell/2007-May/019540.html

ST in terms of State (3)

Mutable Variables (2A) 84 Young Won Lim
2/18/20

There are two subtleties.

The first is that you can't implement Store

without cheating at some level (e.g., unsafeCoerce).

The second is that

 the real ST implementation uses in-place update, which is only safe

because the Store is implicit and used single-threadedly.

https://mail.haskell.org/pipermail/haskell/2007-May/019540.html

Subtleties

Mutable Variables (2A) 85 Young Won Lim
2/18/20

:{

:}

begin or end a multi-line GHCi command block.

GHCi commands can be split over multiple lines,

by wrapping them in :{ and :} (each on a single line of its own):

Prelude> :{

Prelude| g op n [] = n

Prelude| g op n (h:t) = h `op` g op n t

Prelude| :}

Prelude> g (*) 1 [1..3]

6

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/ghci.html

:{ :} multi-line GHCi command block

Mutable Variables (2A) 86 Young Won Lim
2/18/20

module Fib where

-- | Compute Fibonacci numbers

--

-- Examples:

--

-- >>> fib 10 … expression

-- 55 … result

--

-- >>> fib 5 … expression

-- 5 … result

fib :: Int -> Int

fib 0 = 0

fib 1 = 1

fib n = fib (n - 1) + fib (n – 2)

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/ghci.html

Haddock comment (1)

Mutable Variables (2A) 87 Young Won Lim
2/18/20

A comment line starting with >>> denotes an expression.

All comment lines following an expression denote

the result of that expression.

Result is defined by what an REPL (e.g. ghci) prints

to stdout and stderr when evaluating that expression.)

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/ghci.html

Haddock comment (2)

Mutable Variables (2A) 88 Young Won Lim
2/18/20

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88

