Logic (H.1) 20170403 Copyright (c) 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Conjunction 1 AND

	P 1 %	B	р
W T -	1	T	T
any F	F	F	T
-	F	T	F
	F	F	F

Disjunction V OR

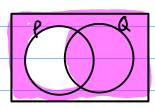
р	B	P V &
Т	T	T
Т	F	F
F	T	F
F	F	F

Exclusive OR + XOR

	P⊕ &	B	p
	F	T	T
1 Mat latt & T	T	F	Т
not both → T	T	T	F
-	F	F	F

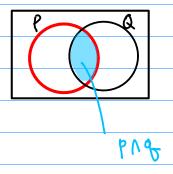
Implication

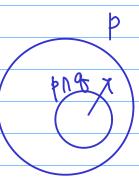
p	B	P -> %	~PV&
7	T	1	_
I	F	F	
F	T	T	
F	F	T	* material implication



p	B	P 1 %	P	(P18)→ P	
T	Τ	T	T	τ	
T	F	F	Т	T	all true
F	T	F	F	T	
F	F	F	F	Т	tautology
					—

* logical implication





Tautology, Contradiction

Р	~ P	PV~P	
T	F	T	$amy T \rightarrow T$
F	Т	T	any T a T
		tautology	l

P	~ P	PN~P	
T	F	F	amy F -> F
F	Т	(F.)	any F 7 F

Contradiction

neither tautology nor contradiction — Contingency

Bi conditionals \

P	B	P > %	9 > P	(P→8) N (q→ P)
T	T	T	T	
T	F	F	T	F
F	T	Т	F	F
F	Ð	T	٢	1

De Morgan's Law

$$\sim (P \land g) \equiv \sim P \lor \sim g$$

$$\sim (P \vee g) \equiv \sim P \wedge \sim g$$

Distributive Law

$$(PV)(g\Lambda r) \equiv (PVg)\Lambda(PVr)$$

$$(P \wedge (g \vee r)) \equiv (P \wedge g) \vee (P \wedge r)$$

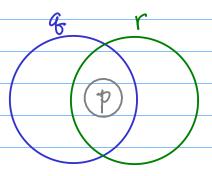
 $(P \to g) \wedge (P \to r) \equiv P \to (g \wedge r)$ $(P \to r) \wedge (g \to r) \equiv (P \vee g) \to \gamma$ $(P \to g) \vee (P \to r) \equiv P \to (g \vee r)$ $(P \to r) \vee (g \to r) \equiv (P \wedge g) \to \gamma$

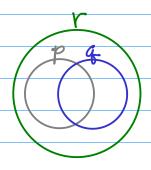
$$(P \to g) \wedge (P \to r) \equiv P \to (g \wedge r)$$

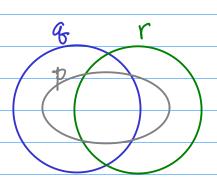
$$(P \to r) \wedge (g \to r) \equiv (P \vee g) \to \gamma$$

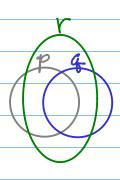
$$(P \to g) \vee (P \to r) \equiv P \to (g \vee r)$$

$$(P \to r) \vee (g \to r) \equiv (P \wedge g) \to \gamma$$



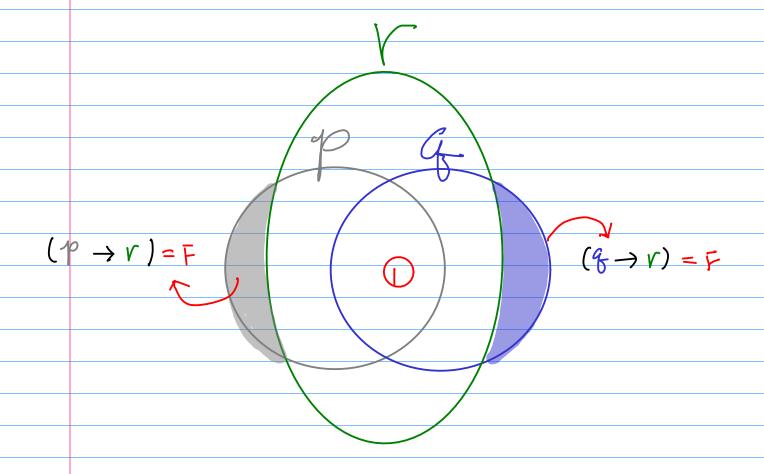






$$(\uparrow \rightarrow r) \lor (g \rightarrow r) \equiv (\uparrow \land g) \rightarrow r$$

	$(\uparrow \rightarrow r)$	(g→ r)
	T	1
2	T	F
3	F	T
	F	F



$$p \leftrightarrow q \equiv (p \rightarrow q) \wedge (q \rightarrow p)$$

p	B	P > %	9 > P	(P→8) N (q→ P)
T		Τ	T	
Т	F	F	T	F
F	T	٢	F	F
F	Ð	T	٢	1

p	B	P ↔ \$
T	Ţ	T)
T	F	F
F	T	F F
F	F	T

	p	B	$P \leftrightarrow $ 8
when P 1 & = True >	I	4	E
	T	F	F
	F	T	F
when ~PA~q = True >	E	F	T

P becomes True

р	B	₽↔%	~ P	~ &	~P +> ~ °F
I	٦	B	F	F	
7	F	F	F	T	F
F	T	F	T	F	F
F	F	T	Ť	T	T

$$\sim (r \leftrightarrow r) \equiv r \leftrightarrow \sim r$$

P	B	P ↔ %	Ρ	~ L	P ↔ ~ °F
T	٦		T	F	F
I	4	(E)	I	4	\bigcirc
F	T	Θ	F	F	Ð
F	Ð	Ō	F	T	F

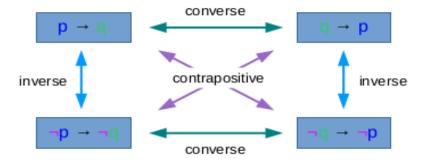
$$\sim (r \leftrightarrow r) \equiv \sim r \leftrightarrow r$$

12	B	P ↔ %	Ρ	b	~ P +> \$
T	4		F	T	F
I	T	E	F	F	H
F	T	9	T	T	T
E	T	Ð	T	F	F

implication if P then Q inverse if ~P then ~Q if ~P then ~Q if Q then P contrapositive statements negation P and ~Q

first statement implies truth of second negation of both statements reversal of both statements reversal and negation of both

contradicts the implication



Propositional Logic (2B)

8

Young Won Lim 11/8/15

Contraposition	from en.wikipedia.org
In logic, contraposition is a law, which says that a conditional statement is logically equivalent to its contrapositive.	
The contrapositive of the statement has its antecedent and consequent inverted and flipped: the contrapositive of $P \rightarrow Q$ is thus $\neg Q \rightarrow \neg P$.	
For instance, the proposition "All bats are mammals"	
can be restated as the conditional " <i>If something is a bat, then it is a mammal</i> ".	
Now, the law says that statement is identical to the contrapositive "If something is not a mammal, then it is not a bat."	
Note that if $P \rightarrow Q$ is true and we are given that Q is false, $\neg Q$, it can logically be concluded that P must be false, $\neg P$.	
This is often called the law of contrapositive , or the	
modus tollens rule of inference.	
Propositional Logic (2B) art Page - Linux Mi ■ 1.Logic Overview	Young Won Lim 11/8/15 Sackup
Propositional Logic (2B)	11/8/15

Contraposition

Consider the Euler diagram shown. According to this diagram, if something is in A, it must be in B as well. So we can interpret "all of A is in B" as:

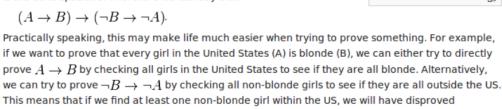
$$A \rightarrow B$$

It is also clear that anything that is **not** within B (the white region) **cannot** be within A, either. This statement,

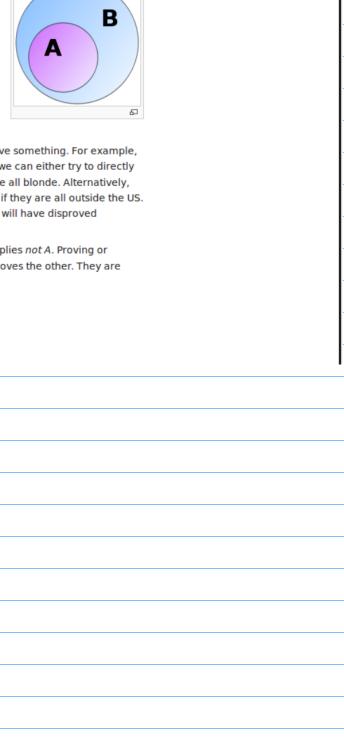
$$\neg B \rightarrow \neg A$$

is the contrapositive. Therefore we can say that

 $\neg B \rightarrow \neg A$, and equivalently $A \rightarrow B$.



To conclude, for any statement where A implies B, then *not B* always implies *not A*. Proving or disproving either one of these statements automatically proves or disproves the other. They are fully equivalent.



contra position
$\neg \bigcirc \rightarrow \neg \Box$
Hypothetical Syllogism
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

