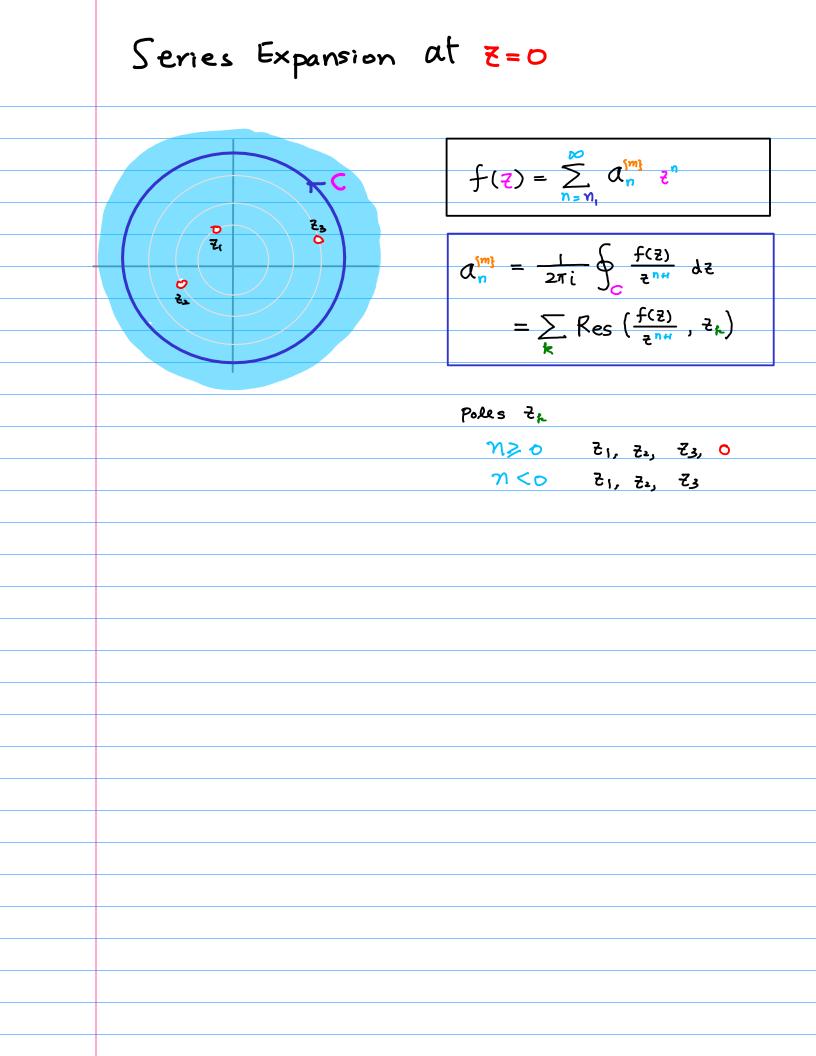
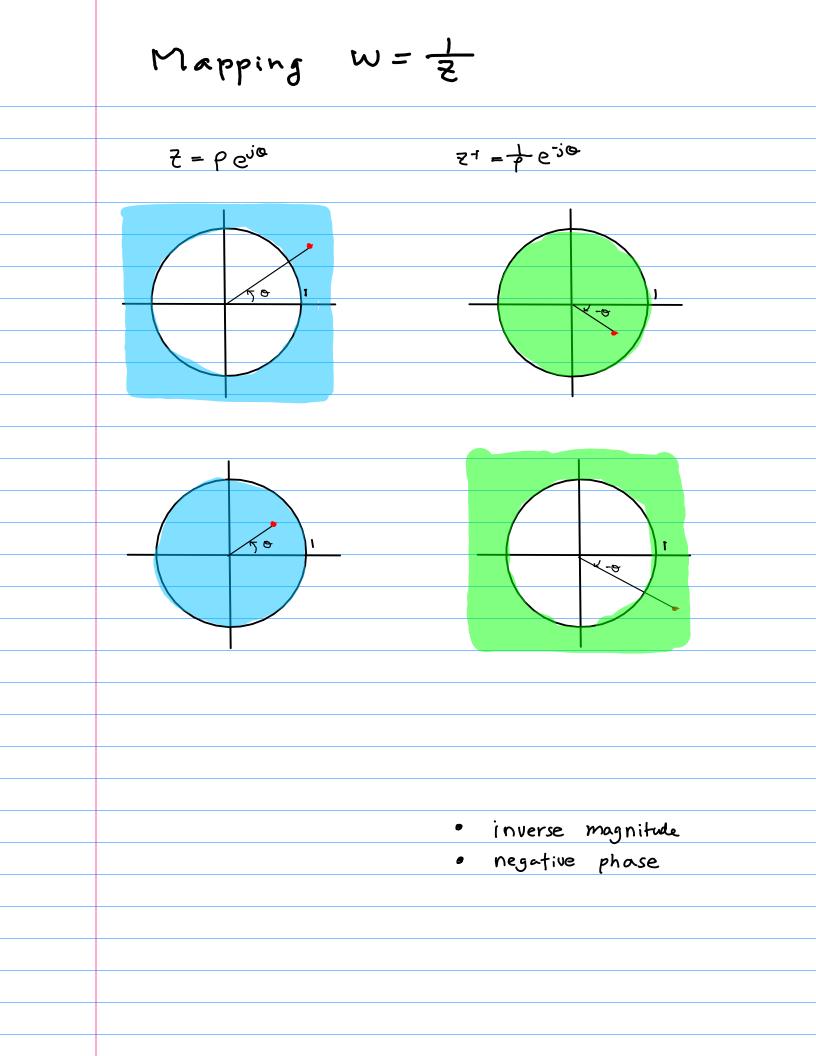
z-Transform 3.Principles
20170715
Copyright (c) 2016 - 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

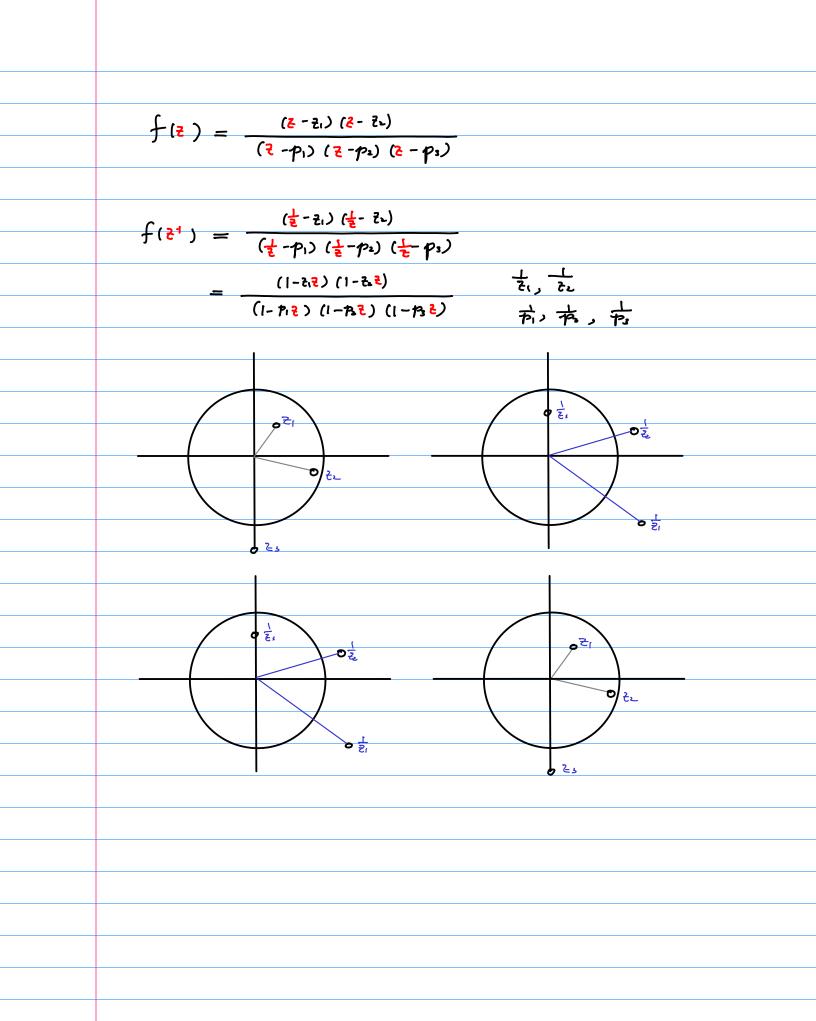
h	ttps://en.wikiversity.org/wiki/Complex_Analysis_in_plain_view
	Complex Analysis in plain view
	Residue Integrals Note
	Louropt Carios with Desidue Theorem Note (41 pdf)
	Laurent Series with Residue Theorem Note (H1.pdf) Laurent Series with Applications Note (H1.pdf)
	Laurent Series and z-Transform Note (H1.pdf)
	Laurent Series and Geometric Series Note (H1.pdf)



* General Series Expansion at Z=0 $a_n = \frac{1}{2\pi i} \oint_c \frac{f(z)}{z^{nH}} dz$ $f(z) = \sum_{n=n}^{\infty} a_n z^n$ $= \sum_{\mathbf{k}} \operatorname{Res}\left(\frac{f(\mathbf{z})}{\mathbf{z}^{nH}}, \mathbf{z}_{\mathbf{k}}\right)$ * Z-transform $X(?) = \sum_{k=0}^{\infty} \chi_k ?^{-k}$ $\chi_{n} = \frac{1}{2\pi i} \oint \chi(z) z^{n-1} dz$ $= \sum_{k} \operatorname{Res}(\chi(z) \geq^{n-1}, z_{k})$

\overline{z} - Transform $\chi(\overline{z})$ Laurent Series $f(\overline{z})$ z-Transform $\chi(\overline{z})$ Laurent Series $f(\overline{z})$ $\chi(\overline{z}) = f(\overline{z}^{-1})$ $\chi(\overline{z}) = f(\overline{z}^{-1})$ $\chi(\overline{z}) = f(\overline{z})$	Laurent Series fl_{ℓ}) z-Transform χll_{ℓ} Laurent Series fl_{ℓ}) χll_{ℓ}) = fl_{ℓ}^{-1}) χll_{ℓ}) = fl_{ℓ}^{-1}) z-Transform χll_{ℓ}) z-Transform χll_{ℓ} z-Transform χll_{ℓ}	•
Laurent Series fl_{ℓ} fl_{ℓ} fl_{ℓ} fl_{ℓ} $\chi_{n} = 0$ $\chi_{\ell} = fl_{\ell}^{1}$ $\chi_{\ell} = \chi_{n}$ z-Transform $\chi_{\ell} = fl_{\ell}$ χ_{n} Laurent Series fl_{ℓ} fl_{ℓ} χ_{n}	Laurent Series $f(l_{1}) \iff Q_{n}$ $\chi(l_{1}) = f(l_{1}^{1}) \iff \chi_{n} = Q_{n}$ z-Transform $\chi(l_{1}) \iff \chi_{n}$ Laurent Series $f(l_{1}) \iff Q_{n}$	
$\chi(l_{\ell}) = f(l_{\ell}^{-1}) \swarrow \chi_{n} = (\Lambda_{n})$ z-Transform $\chi(l_{\ell}) \swarrow \chi_{n}$ Laurent Series $f(l_{\ell}) \circlearrowright \Lambda_{n}$	$\chi(l_{1}) = f(l_{1}^{l_{1}}) \chi_{n} = Q_{n}$ z-Transform $\chi(l_{1}) \chi_{n}$ Laurent Series $f(l_{1}) \chi_{n}$	z-Transform X(۲)
z-Transform $\chi(2)$ χ_n Laurent Series $f(2)$ (λ_n)	z-Transform $\chi(l_{t})$ χ_{n} Laurent Series $f(l_{t})$ χ_{n}	Laurent Series flz)
Laurent Series flz)	Laurent Series flz)	$\chi(z) = f(z^{1})$ \swarrow $\chi_{n} = (\lambda_{n})$
Laurent Series flz)	Laurent Series flz)	
Laurent Series flz) (λ_n)	Laurent Series flz)	
		z-Transform XLZ) Zn
$\chi(z) = f(z)$ $\chi_n = (\lambda_n)$	$\chi(l_{1}) = f(l_{1}) \qquad \chi_{m} = (l_{m})$	Laurent Series flz)
		$\chi_{l2} = f_{l2} \qquad \chi_n = (\lambda_n)$





$$g(z) \quad w; th \quad a \quad simple \quad pole \\ b > b \quad a \quad simple \quad pole \\ b > b \quad a \quad simple \quad pole \\ g(z) = \frac{1}{1-bz} = \frac{b^{2}}{b^{1}-z} \quad |bz| < 1 \quad |z| > b$$

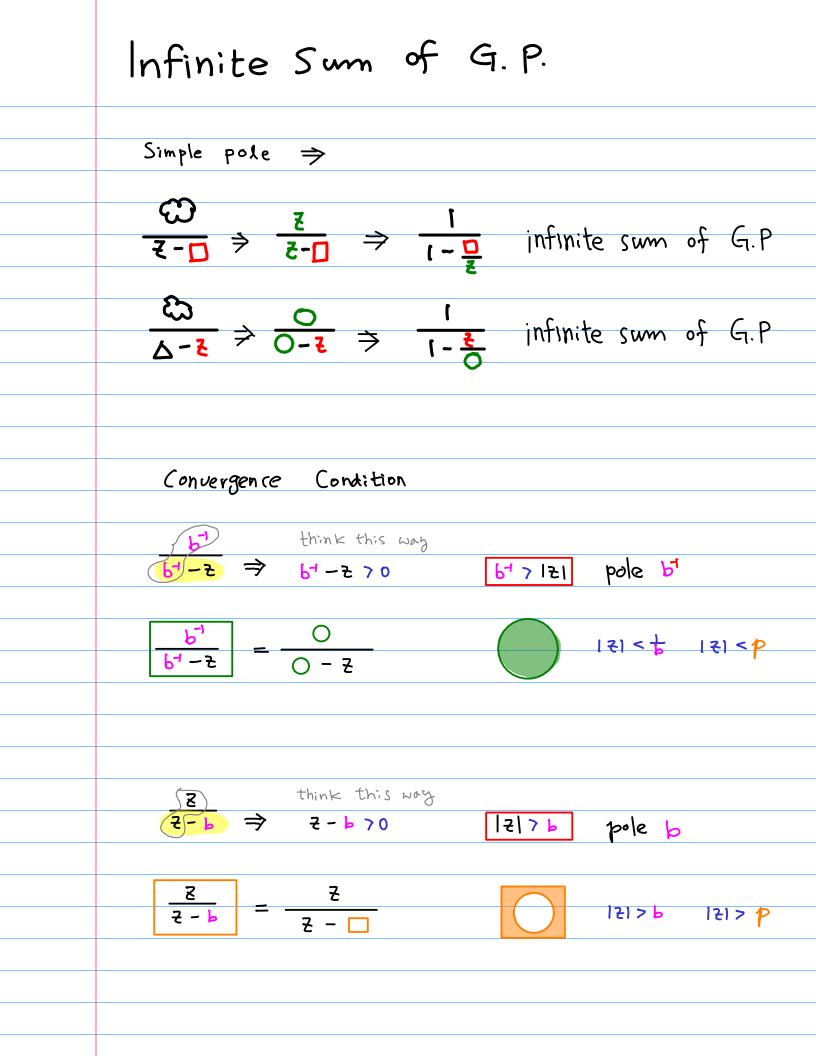
$$f(z) = \frac{1}{1-\frac{b}{z}} = \frac{z}{z-b} \quad |\frac{b}{z}| < 1 \quad |z| > b$$

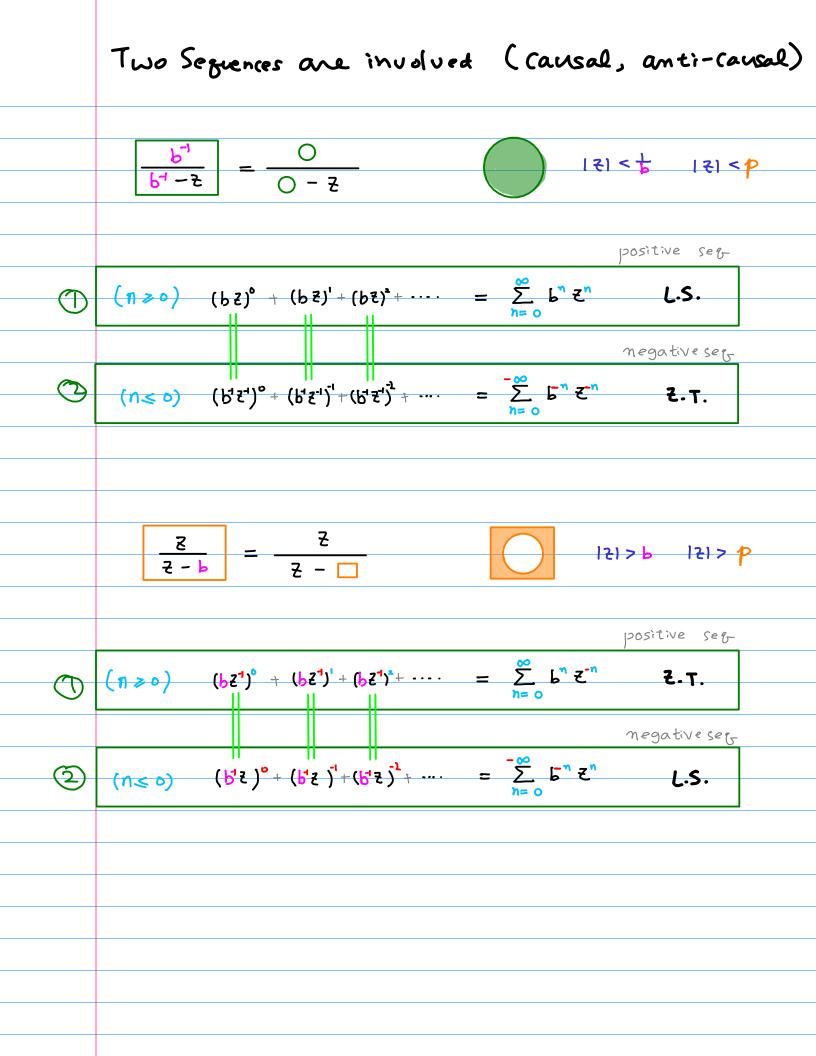
$$g(z^{4}) = \frac{b^{4}}{b^{4}-z^{4}} = \frac{z}{z-b} = f(z)$$

$$f(z^{4}) = \frac{z^{4}}{z^{4}-b} = \frac{b^{4}}{b^{4}+z} = g(z)$$

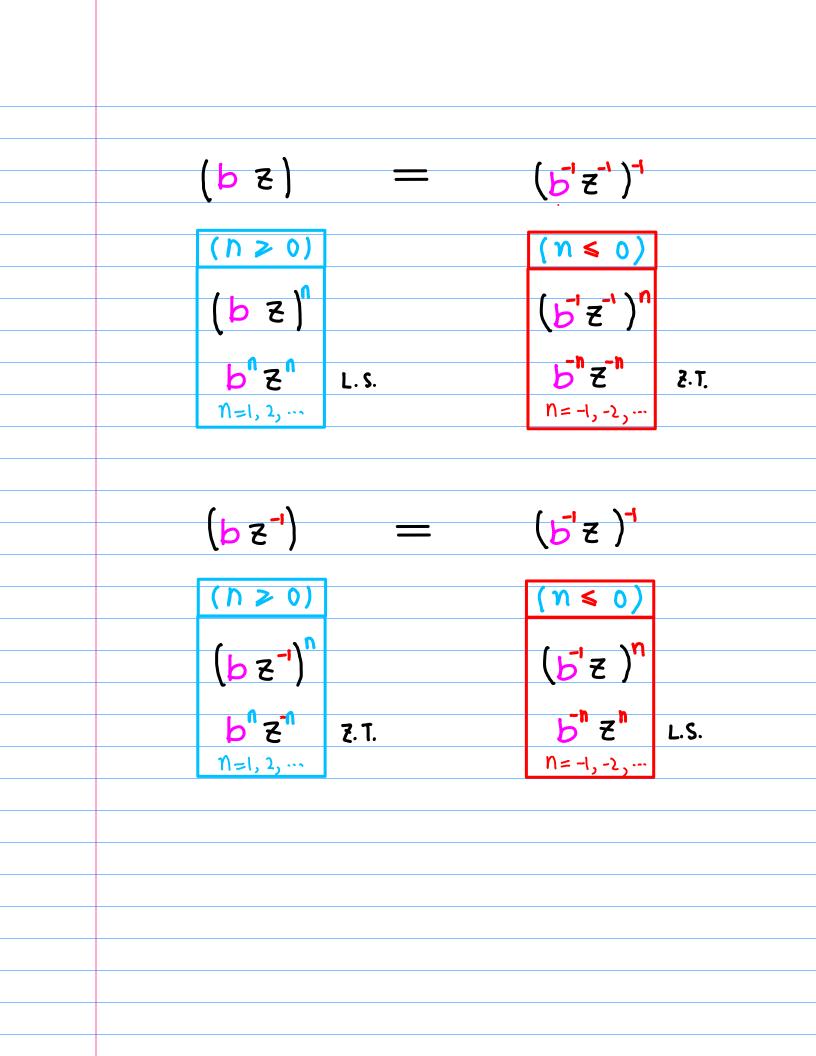
$$g(z^{4}) = f(z)$$

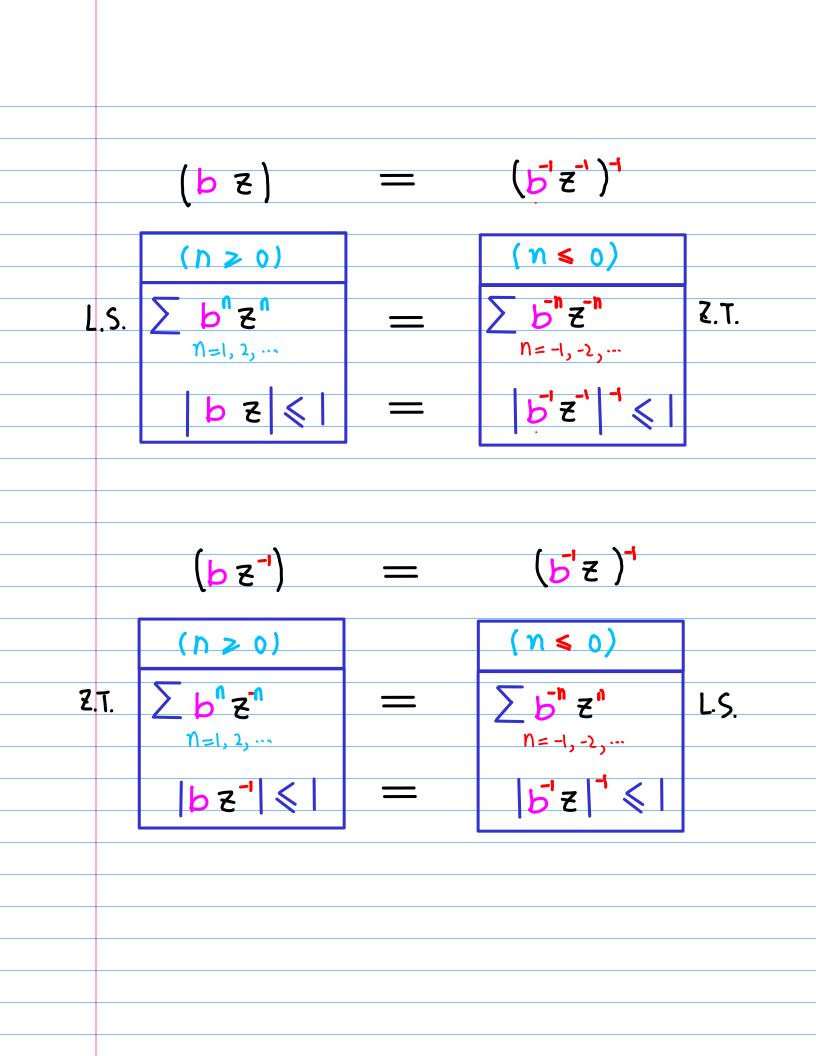
$$g(z^{4}) = f(z)$$





1≥0 1≤0 <i>L</i> .S. ₹.T.
$()^{\circ} + ()^{\circ} + \cdots \longrightarrow (n \ge 0)$
$()^{\circ} + ()^{\dagger} + ()^{\dagger} + \cdots \rightarrow (n \leq \circ)$
 Σ. €) ε "→ L.S.
∑ ⑦ ₹ "> ₹. Ţ.

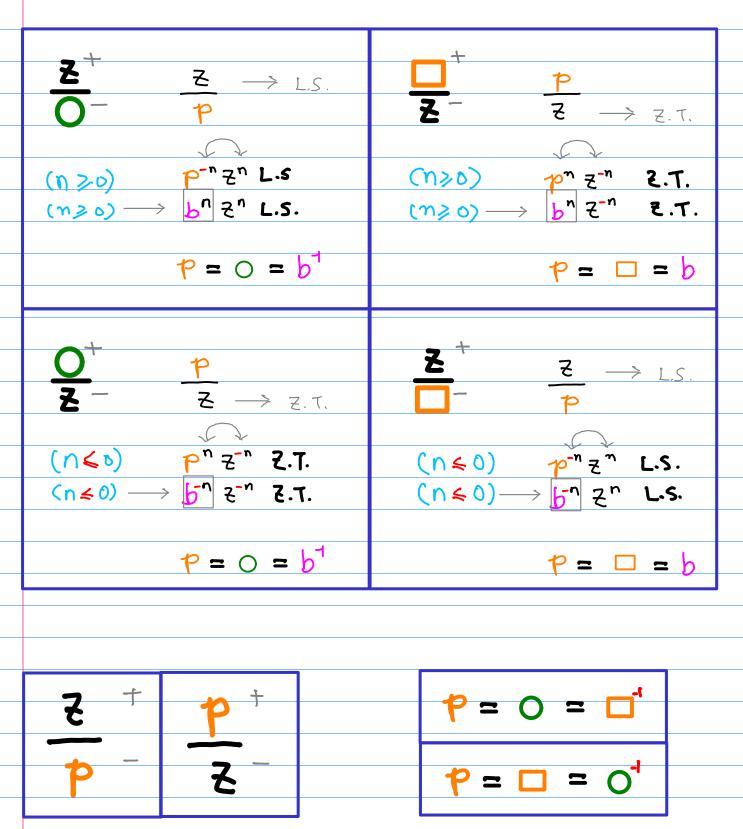




Z Z – 🗔 0 0 - Z pole p=0 pole p= c.r $\left(\frac{z}{O}\right)$ C.r (] r.o.c |z|<0 r. o. c | z } 7 🗖 $\sum_{n=0}^{\infty} \left(\frac{\Box}{Z}\right)^n = \sum_{n=0}^{\infty} \Box^n Z^{-n}$ $\sum_{n=0}^{\infty} \left(\frac{z}{O}\right)^n = \sum_{n=0}^{\infty} \left(\frac{1}{O}\right)^n z^n$ (n>0) $\sum_{n=0}^{-\infty} \left(\frac{\Box}{Z} \right)^{-n} = \sum_{n=0}^{-\infty} \left(\frac{\Box}{\Box} \right)^{n} Z^{n}$ $\sum_{n=0}^{-\infty} \left(\frac{z}{O}\right)^{-n} = \sum_{n=0}^{-\infty} O^n z^{-n}$ (n≤0) **∂.1:** bⁿ ₹⁻ⁿ (n ≥ 0) L-S: bⁿ zⁿ (n≥o) **2.7:** b⁻ⁿ 2⁻ⁿ (n≤0) L.S: 6-7 27 <u>(n≤ o)</u> $\mathbf{P} = \mathbf{O} = \mathbf{b}^{\mathsf{T}}$ P=□ = b

	N≥0 Pn	& n	< 0 P_n	assumet
	<u> </u>			
(N≶O)	$\left(\frac{z}{0}\right)^n \iff b^n z^n$	L.S. (n≥ ∘)	$\left(\frac{\Box}{\Xi}\right)^n$	7.7 b ⁿ z ^{−n} (n ≥ 0)
(n≤o)	$\left(\frac{z}{O}\right)^{-n}$ \longleftrightarrow $b^{-n}z^{-n}$	7.3 (m<0)	(<u></u>] [−] ¶ ↔	
	$P = O = b^{\dagger}$		₽ = 0	
	(N≥0) Ŋ	Pn		
	(n≤o) –η	P_u		

 $\left(\frac{\overline{z}}{O}\right)^n$, $\left(\frac{\overline{z}}{O}\right)^{-n}$, $\left(\frac{\Box}{\overline{z}}\right)^n$, $\left(\frac{\Box}{\overline{z}}\right)^{-n}$

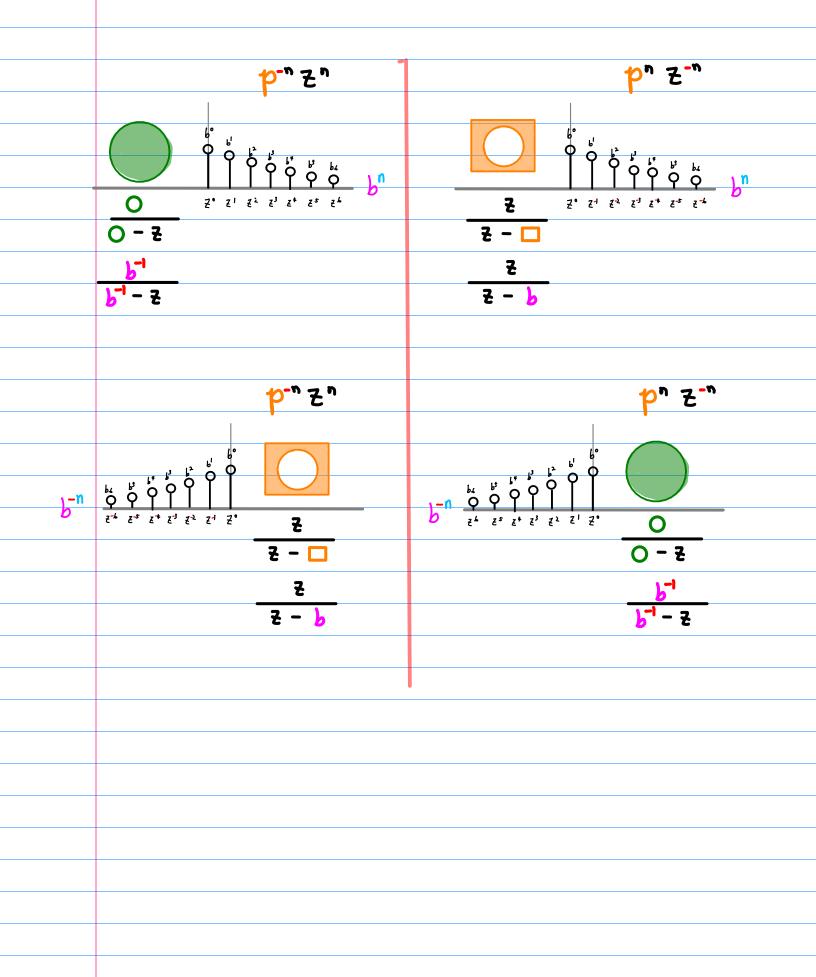


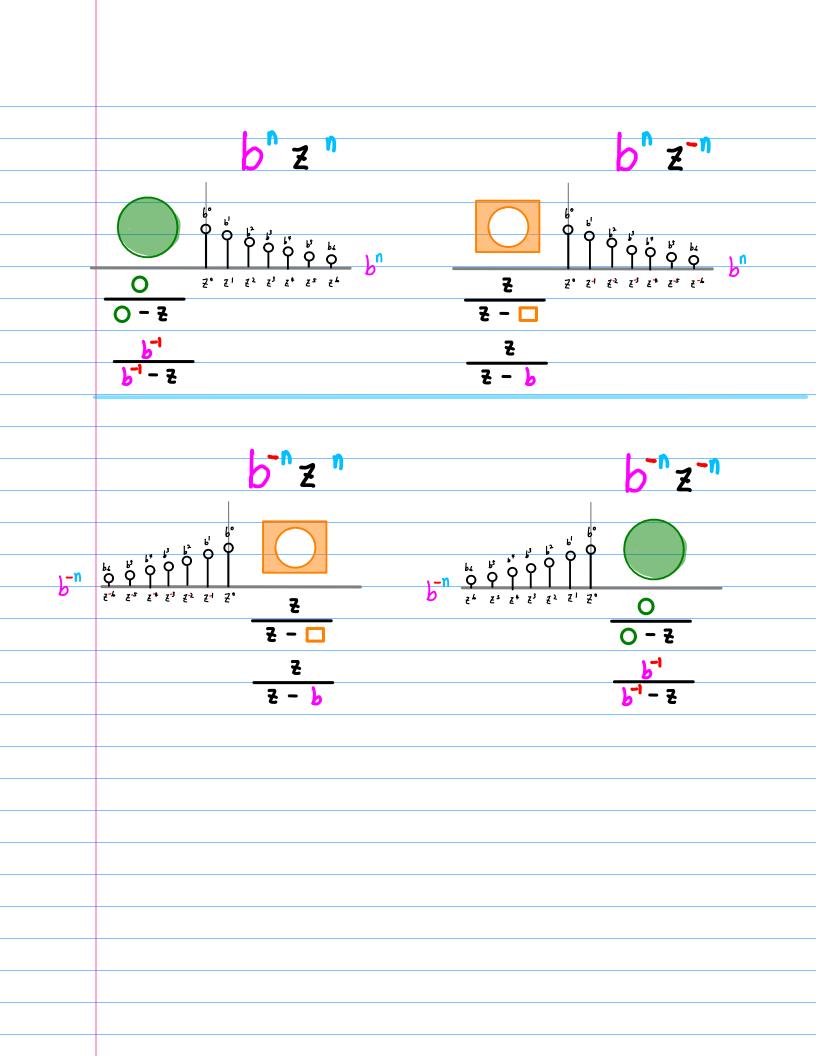
L.S. Z.T.

	L.S.	P ⁿ z ⁿ	Z.T.	₽ [°] ₹ [•]
(n> 0)	$\left(\frac{\overline{z}}{\overline{O}}\right)^n$	$\left(\frac{1}{O}\right)^n \mathbb{Z}^n$	$\left(\frac{\Box}{\Xi}\right)^n$	[ⁿ z ⁻ⁿ
	0 0 - Z	₽ ⁻ⁿ z ⁿ	- 2 	P ⁿ z ⁻ⁿ
		<i>2°,</i> ٤', ٤ ² ,		₹°, ₹⁻¹, ₹⁻ኒ, ···
(n <o)< th=""><th>(<u>۔</u>) م</th><th>(<mark>⊥</mark>)ⁿ Zⁿ</th><th>$\left(\frac{z}{O}\right)^{-n}$</th><th>0ⁿ Z⁻ⁿ</th></o)<>	(<u>۔</u>) م	(<mark>⊥</mark>) ⁿ Z ⁿ	$\left(\frac{z}{O}\right)^{-n}$	0 ⁿ Z ⁻ⁿ
	₹ ₹-□	₽ ⁻ⁿ z ⁿ	0 0 - Z	P ⁿ Z ⁻ⁿ
		٤° , ٤ ⁻¹ , ٤ ⁻¹ ,		<i>گ</i> °, ٤', ٤², …
	(n≯o)	$\mathbf{P} = \mathbf{O} = \mathbf{b}^{T}$	(n≥o)	$P = \Box = b$
	(n <o)< th=""><th>P = □ = b</th><th>(n<o)< th=""><th>$P = O = b^{1}$</th></o)<></th></o)<>	P = □ = b	(n <o)< th=""><th>$P = O = b^{1}$</th></o)<>	$P = O = b^{1}$

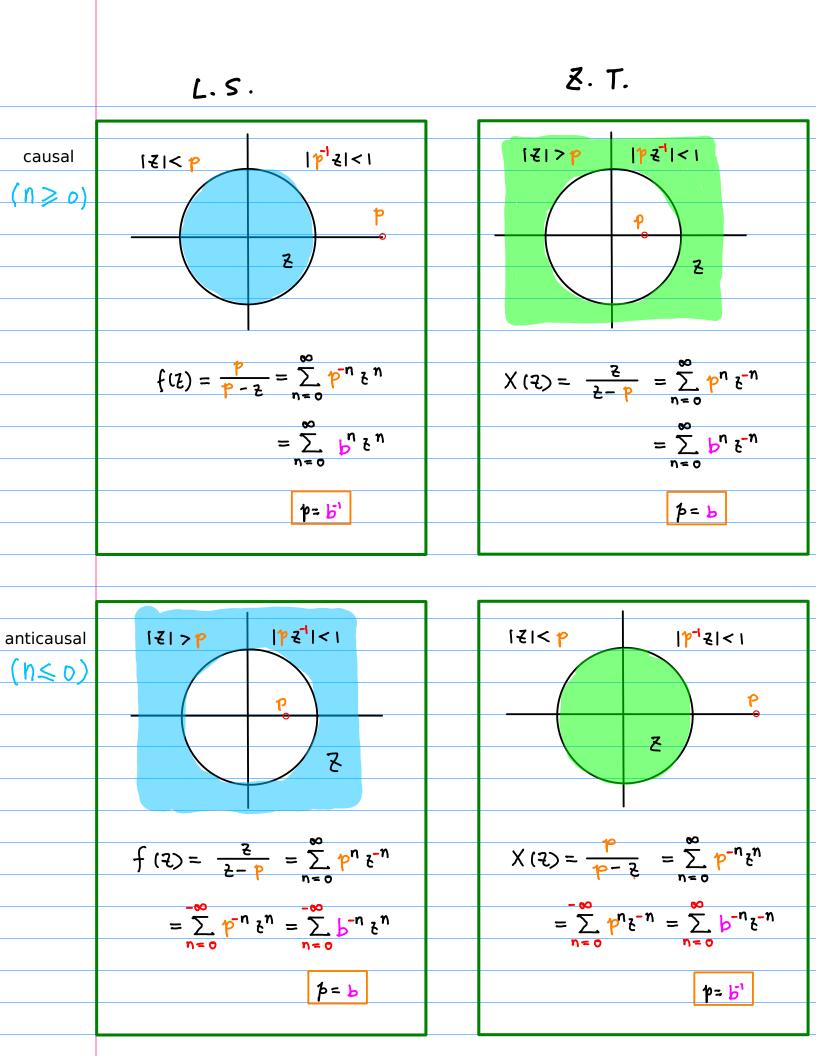
	L. S.	Z.T.	(n> o)	(n≥o)	
	L. S.	₹.T.	<u>(ກ<₀)</u>	<u>(n≼o)</u>	
			• 10	. n	
	P-"	p'n	6 [°]	6 ⁿ	
	p-1)	pn	6 ⁿ	6 [°]	
	P = 0	₽= 🗆	0 = b ¹	🗆 = b	
+	2 = 🗆	P = 0	□ = b	0 = b ¹	
	n	D n	n	 ^	
	– ⁿ	- ")	^		
					·
	0 5 - 0	2 2 - 5	 	2 7 - 🗖	
	2	0	2		
	2 - 🗖	0 - 2	2 - 🗖	5-10	

L.S.: $Q_n z^n \qquad Z.T.: x_n z^n$



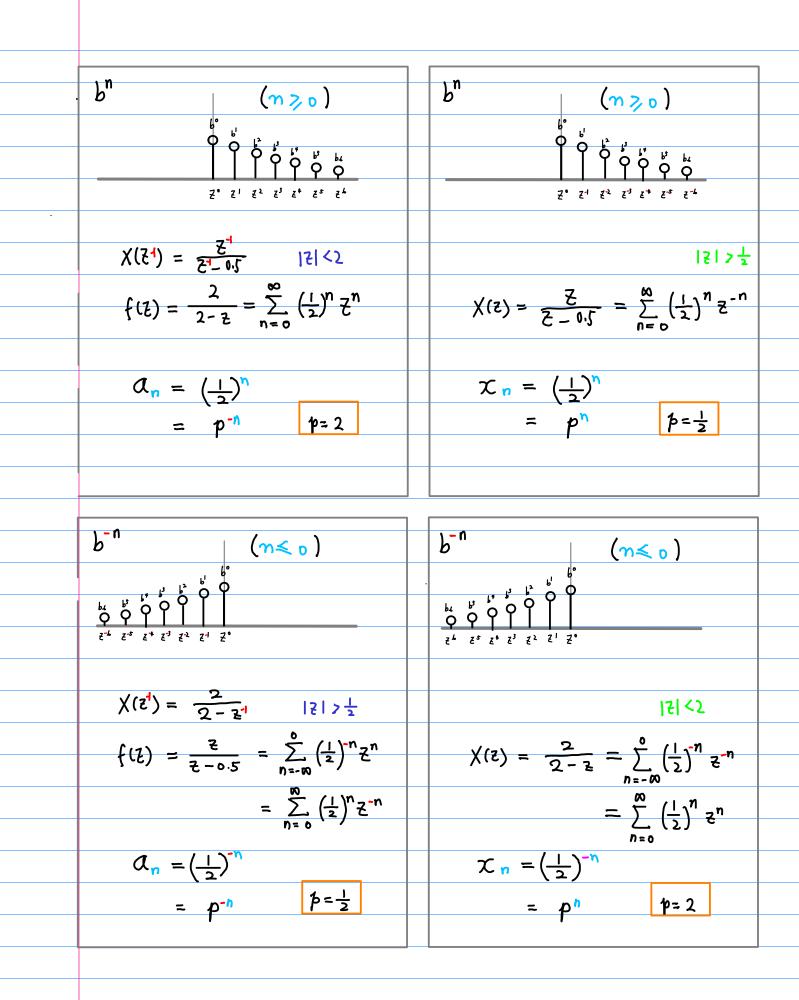


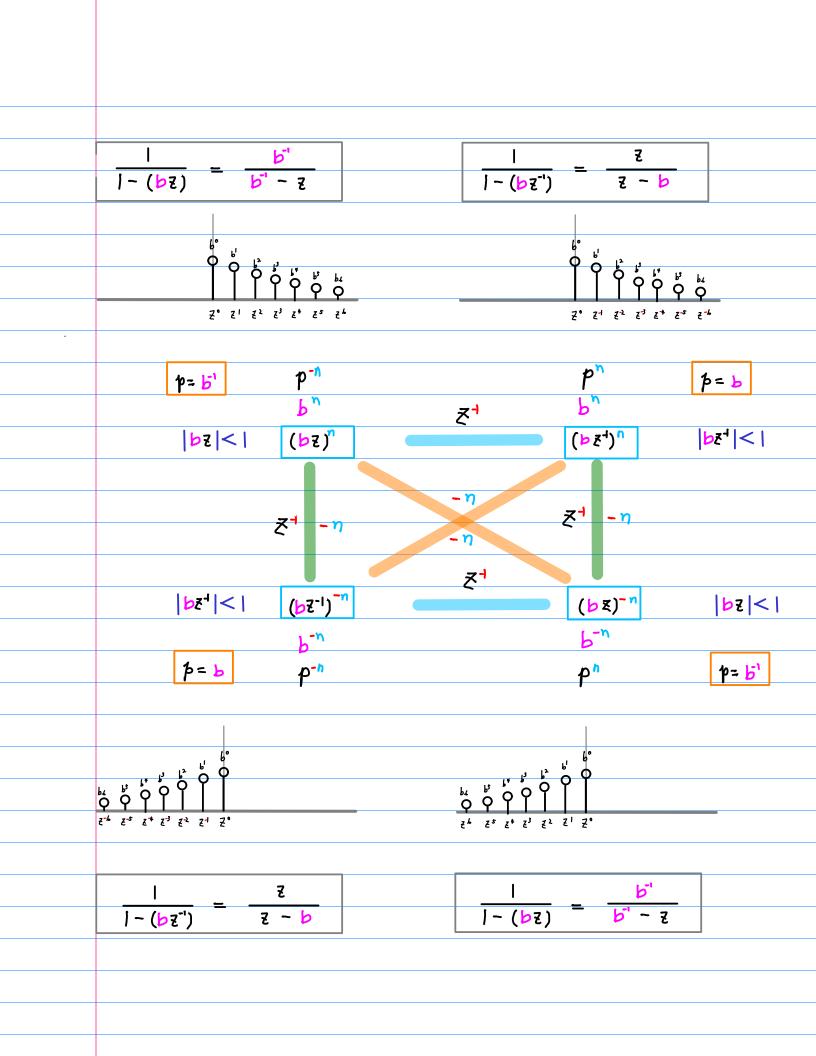
Z.T.	₽ ^{z⁻¹ = b ^{z⁻¹} (n≥o)}	$P Z^{-1} = b^{-1} Z^{-1} (n < 0)$
<u> </u>	$\sum_{k} (b z^{-1})^{k} = \frac{z}{z - b}$	$\sum_{k} (b z)^{k} = \frac{b^{1}}{b^{1} - z}$
	(k = n≥0)	$\begin{pmatrix} k & -n > 0 \end{pmatrix}$
	b E ¹ <	bz <
	p = b	p=b ⁺
L.S.	$p^{-1}z = b z (n \ge 0)$	$p^{\dagger} z = b^{\dagger} z (n \le 0)$
	$\sum_{k} \left(\frac{b}{2} \right)^{k} = \frac{b^{-1}}{b^{-1} - 2}$	$\sum_{k} (b z^{-1})^{k} = \frac{z}{z - b}$
	(k = n≥0)	(k = -n > 0)
	b Z <	b 程 ¹ < ●
	p = b ⁺	p = b

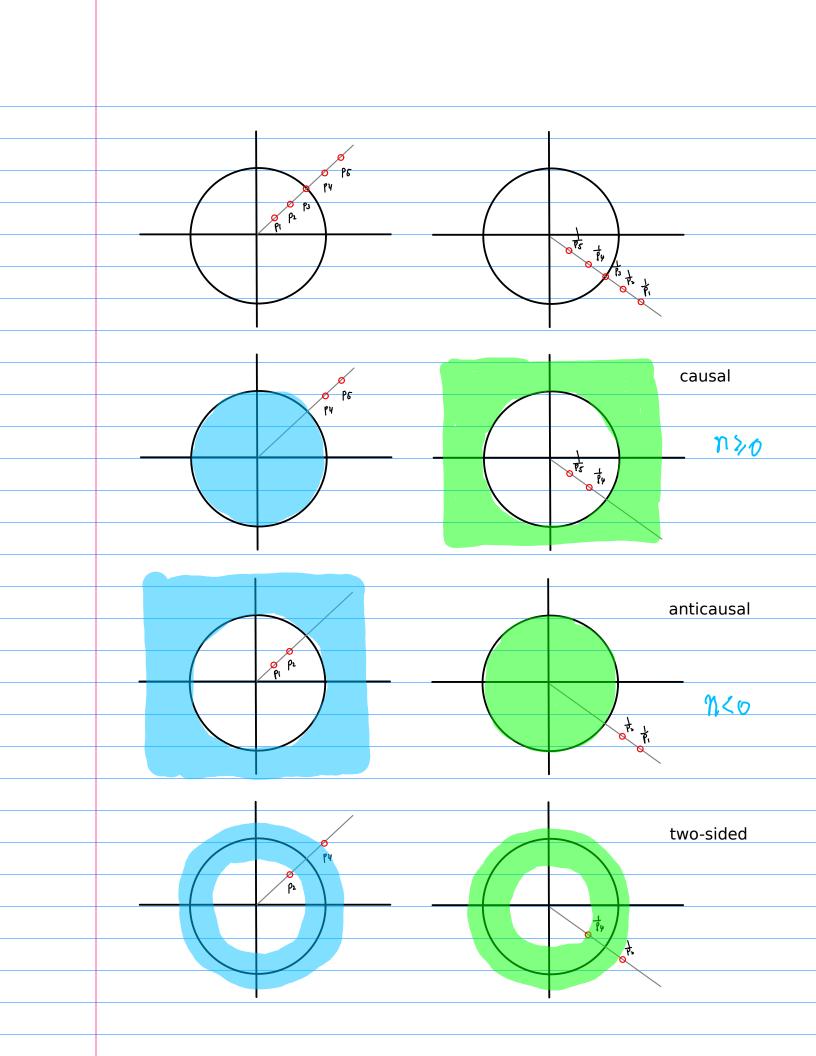


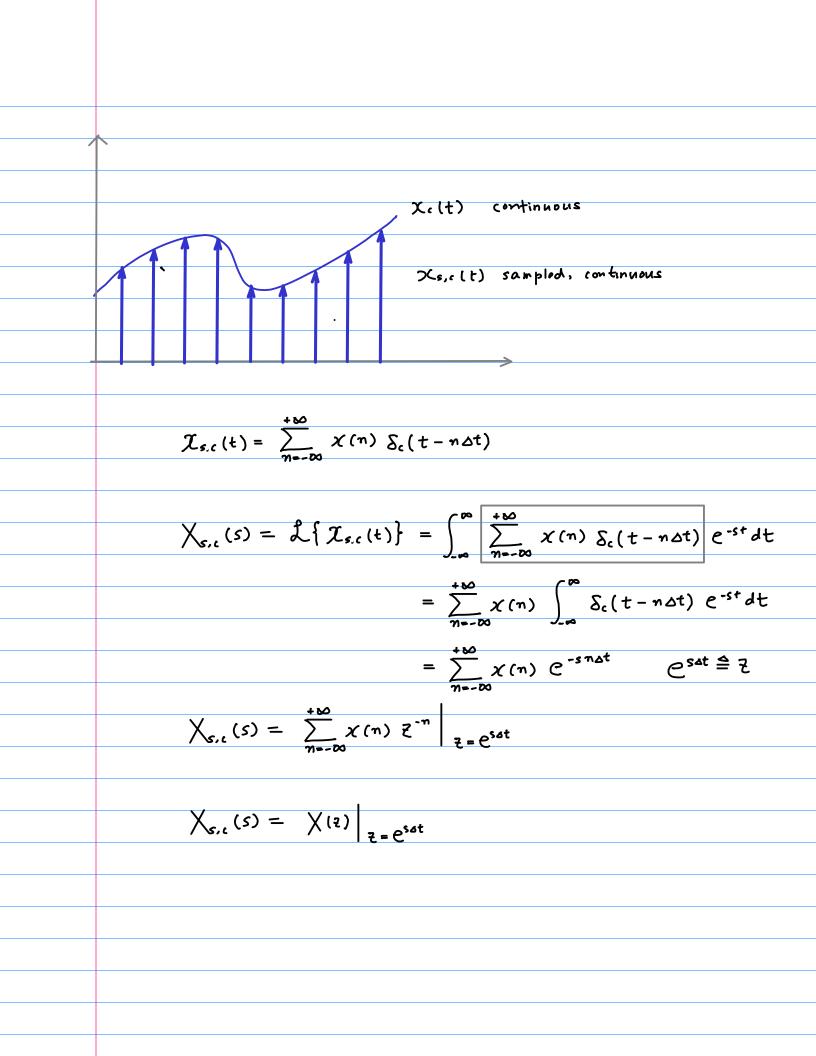
$$\begin{aligned} \mathcal{A}_{n} &= b^{-n} (n \leq 0) \\ &= p^{-n} (n \leq 0) P = b \\ &= p^{n} (n \leq 0) P = b^{-1} \\ f(z) &= \frac{z}{z - b} \\ \end{aligned}$$

$$\begin{aligned} X(z) &= \frac{b^{2}}{b^{1} - z} \end{aligned}$$









$$X_{e,e}(s) = \mathcal{L} \{ \mathcal{I}_{e,e}(t) \} = |X(t)||_{t=e^{tst}}$$

$$\mathcal{I}_{e,e}(t). \quad \text{an impulse train}$$

$$\text{whose coefficients are given by } x(n] = x_e(n \Delta t)$$

$$Z - \text{transform} : \alpha \text{ special Lawrent Series}$$

$$\overline{z_{m}} = 0 \qquad \left[a_{n-n}^{(0)} = \widehat{R}(n)\right] \qquad n \rightarrow -n$$

$$\int (z) = \sum_{n=n}^{\infty} a_{n}^{(n)} (z - \overline{z_{m}})^{n}$$

$$a_{n}^{(n)} = \frac{1}{2\pi i} \int_{C} \frac{f(z)}{(z - \overline{z_{m}})^{n+1}} dz'$$

$$= \sum_{k} \operatorname{Res}\left(\frac{f(z)}{(z - \overline{z_{m}})^{n+1}}, \overline{z_{m}}\right)$$

$$T_{1} \operatorname{Reversal} \leftarrow \text{Leplate Transform}$$

$$\operatorname{The transform functions} \qquad X(s) = \int \text{over negative powers } \overline{z^{-n}} \quad \text{for } t > 0$$

$$X(z) = \int \text{over negative powers } \overline{z^{-n}} \quad \text{for } t > 0$$

$$T_{1} = \int \text{over negative powers } \overline{z^{-n}} \quad \text{for } t > 0$$

$$T_{1} = \sum_{k=1}^{\infty} \operatorname{over negative powers } \overline{z^{-n}} \quad \text{for } t > 0$$

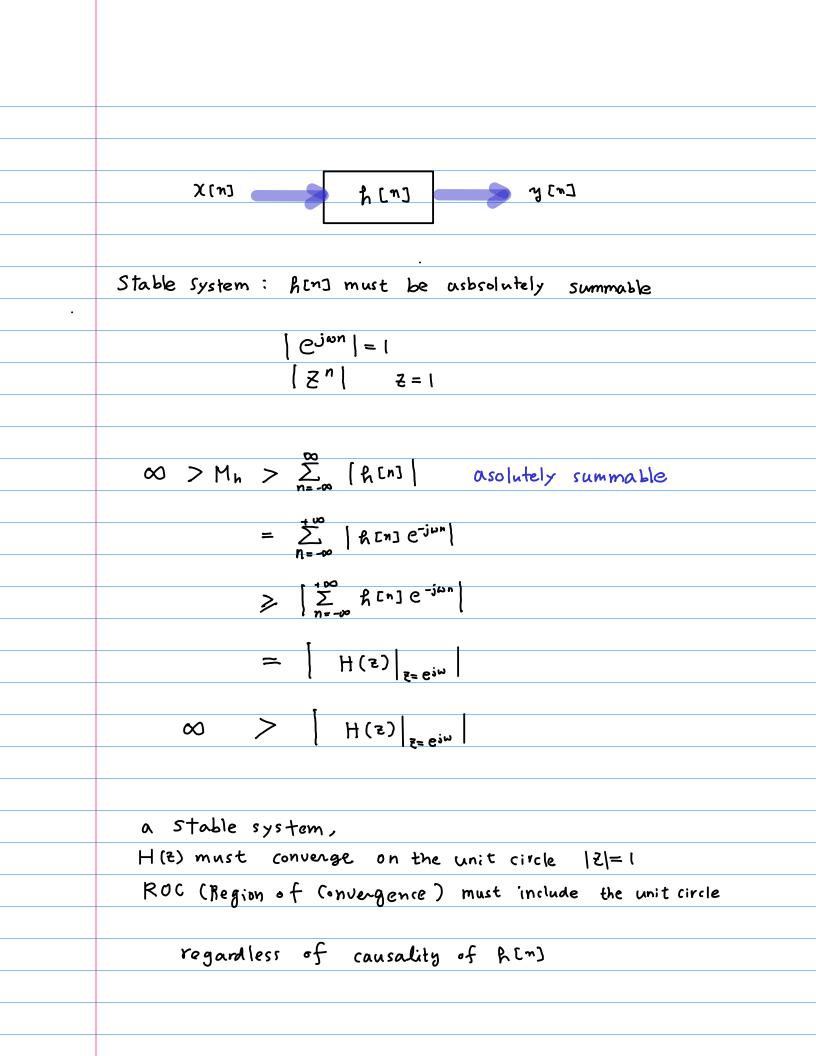
$$T_{1} = \sum_{k=1}^{\infty} \operatorname{over negative powers } \overline{z^{-n}} \quad \text{for } t > 0$$

$$T_{1} = \sum_{k=1}^{\infty} \operatorname{over negative powers } \overline{z^{-n}} \quad \text{for } t > 0$$

$$T_{1} = \sum_{k=1}^{\infty} \operatorname{over negative powers } \overline{z^{-n}} \quad \text{for } t > 0$$

$$T_{1} = \sum_{k=1}^{\infty} \operatorname{over negative powers } \overline{z^{-n}} \quad \text{for } t > 0$$

$$T_{1} = \sum_{k=1}^{\infty} \operatorname{over negative powers } \overline{z^{-n}} \quad \text{for } t > 0$$



				_		
	H	2) 121-1	نع) ۲ =	ŵ) D T F T ∘	f h[r]	
				have converge		
continuous	oul stable	Signal	must	have converg	ent CTFTs	
	C .		•			
	رج	- unit ci	rcle	₹= C ^{J™}		
	Z.	т ⁻	btft ¹			
	2	1		identical fo	ntmnias	

R(m) causal

$$H(z) = \sum_{\mu=0}^{\infty} h(m) z^{-m} = \sum_{\mu=0}^{\infty} h(m) z^{-m} \quad n \in [0, \infty)$$
for finite values of n_{2}
each term must be finite as long as $z \pm 0$
For the sum to converge,
 $h(m) z^{-m}$ must vanish as $n \pm \infty$

$$|z| > r_{h} \quad z_{h} = r_{h} e^{j\omega}$$

$$|z_{h}| \quad z_{h} = r_{h} e^{j\omega}$$

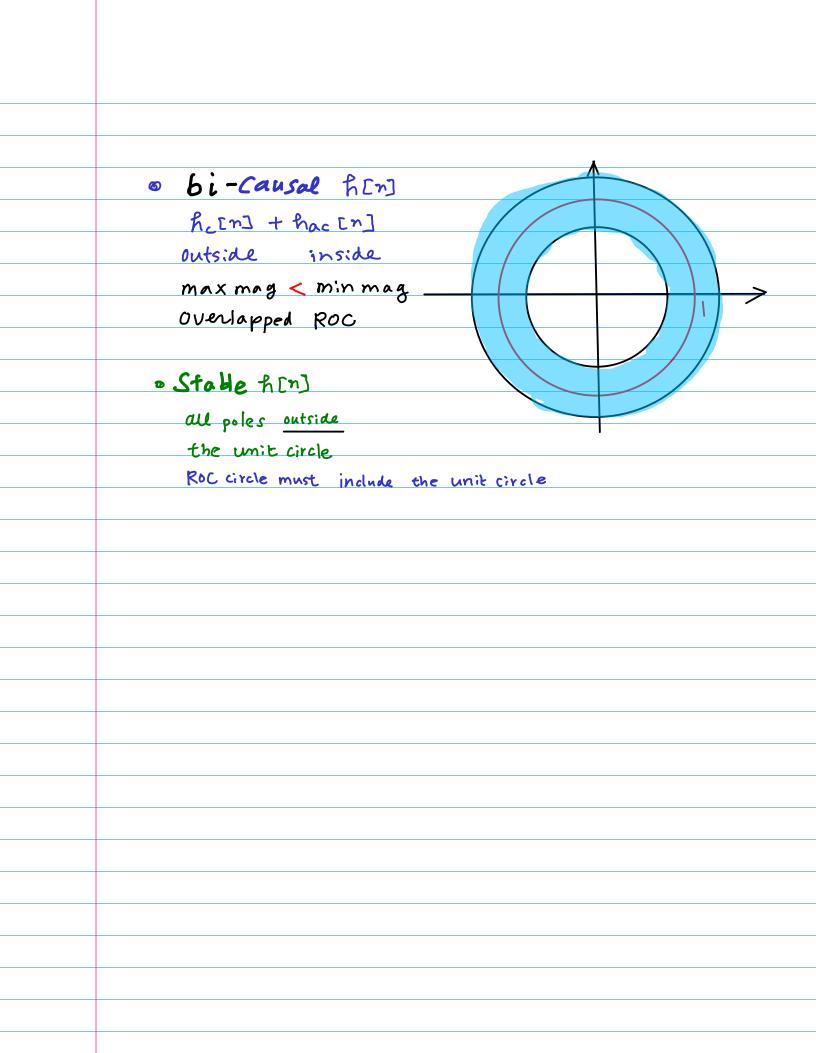
$$|z_{h}|^{2} \quad r_{h} \quad z_{h} = r_{h} e^{j\omega}$$

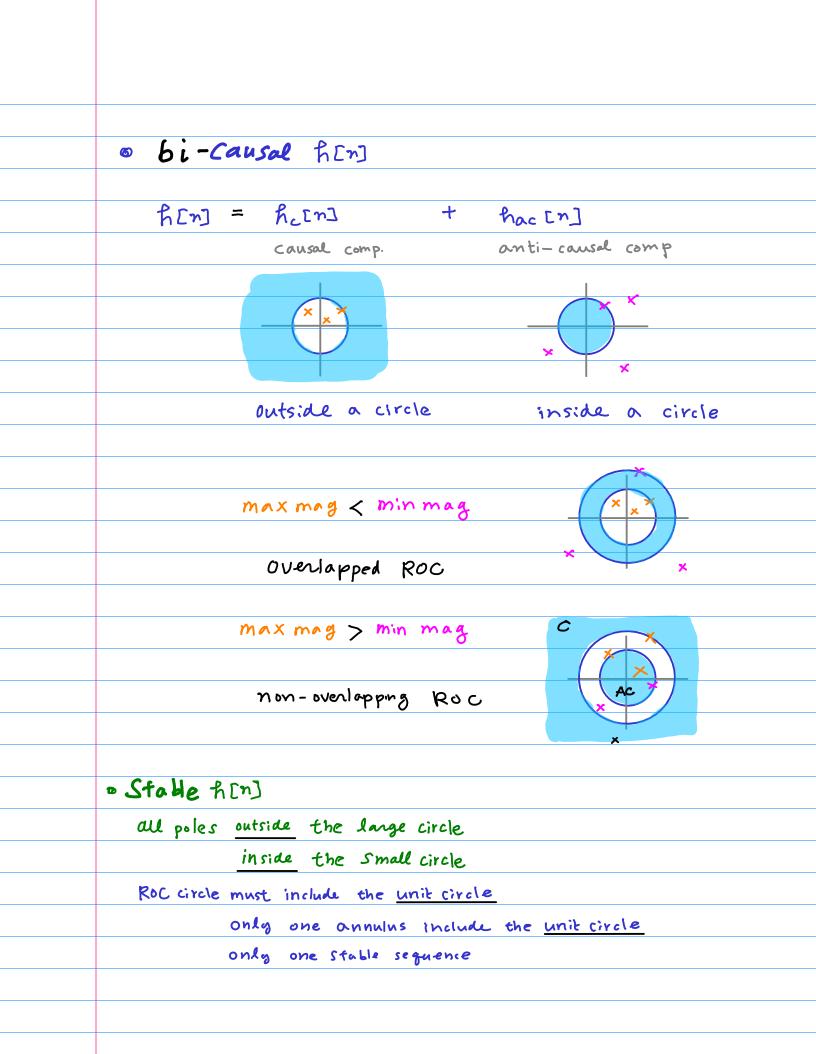
$$|z_{h}|^{2} \quad z_{h} = r_{h} e^{j\omega}$$

geometric components — as poles $\frac{5}{25-5} = \frac{1}{\left(\frac{25}{5}\right)-1} = \frac{5}{2} \operatorname{Cn} \operatorname{In} \frac{1}{3} \operatorname{S} \frac{5}{5} \operatorname{S} \frac{5}{5}$ ROC of a causal sequence h[n] outside the radius of the langest magnitude pole of HI ROC of a causal signal h(t) to the right of the rightmost pole of He(s) if h[n] is a stable, causal sequence, the unit circle must be included in the ROC

· Causal h[n] Roc: <u>outside</u> of a circle X × · Stable h[n] X all poles inside the unit circle ROC circle must be Smaller than the unit circle => all the geometric components of R[n]: modes must decay with increasing n all the poles of H(z) must be within the unit circle all the poles of He(s) must be in the left half plane

× × o anti-Causal h[n] ROC: <u>in side</u> of a circle \rightarrow · Stable h[n] all poles outside × the unit circle X ROC circle must be larger than the unit circle > all the geometric components of R[n] : modes must decay with <u>decreasing</u> n



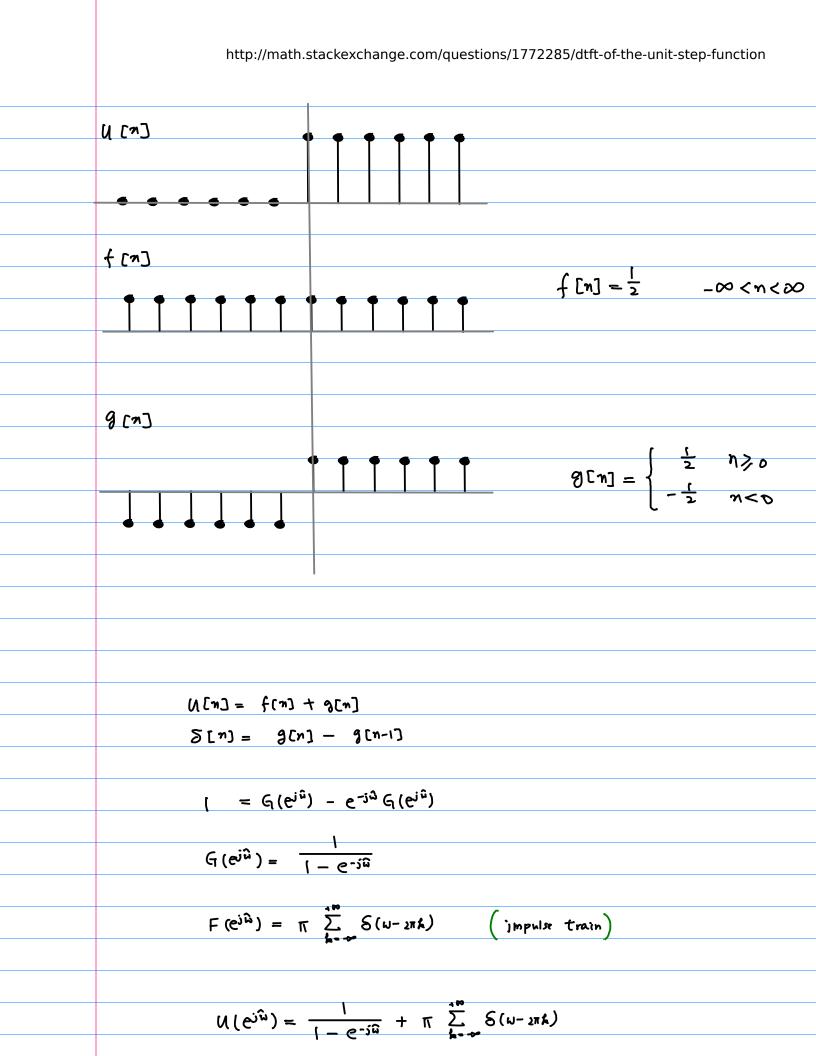


Existence of the z-transform

$$X(z) = \sum_{n=0}^{\infty} x(n) z^{-n} = \sum_{n=0}^{\infty} \frac{x(n)}{z^{n}}$$
the existence of the z-transform is guaranteed if

$$|X(z)| \leq \sum_{n=0}^{\infty} \frac{|x(n)|}{|z^{n}|} < \infty \quad \text{for some } |z|$$
any signal $x(n)$ that grows no faster than
an exponential signal r_{0}^{n} , for some r_{0}
satisfies the above constitue
if $|X(z)| \leq \sum_{n=0}^{\infty} \frac{(r_{0})^{n}}{(|z|)^{n}} = \frac{1}{1-\frac{1$

Region of Convergence Laplace Transform Actult d>0 2-Transform Ád" u[n] 10170 DTFT(x) $X(z) = A \sum_{n=-\infty}^{\infty} \propto^n u[n] z^{-n} = A \sum_{n=-n}^{\infty} \propto^n z^{-n} = A \sum_{n=-n}^{\infty} \left(\frac{\alpha}{z}\right)^n$ (on verge 2 <1 (21>1~1) open exterior of a circle of radius 101 the sum of a geometric series $\chi(z) = A \frac{1}{1-\frac{\alpha}{2}} = \frac{A}{1-\alpha z^{-1}} = A \frac{z}{z-\alpha} \qquad |z| > |\alpha|$ **DTFT** $X(j\hat{\omega}) = \sum_{n=1}^{+\infty} x(n) e^{-j\hat{\omega}n}$



D'iscrete Time Exponential P ⁿ
Continuous time exponential e st
$C^{\lambda t} = \mathcal{F}^{t} \qquad (C^{\lambda})^{t} = \mathcal{F}^{t}$ $C^{\lambda} = \mathcal{F}$
$\lambda = \ln x$ $e^{-0.3t} = (0.9408)^{t}$
$4^t = e^{1.33(t)}$
Continuous time analysis e ^{at} discrete time analysis X ⁿ
$C^{\lambda n} = \mathcal{F}^{n} \qquad (C^{\lambda})^{n} = \mathcal{F}^{n}$ $C^{\lambda} = \mathcal{F}$
$\lambda = \ln x$

the location of
$$\lambda$$
 in the complex plain indicates whether
 $D \in \mathcal{X}^t$ will grow exponentially
 $\bigcirc e^{\chi t}$ will decay exponentially
 $\bigcirc e^{\chi t}$ will oscillates with constant amplitude

constant signal : oscillation with zero frequency

$$e^{jS^{2n}}$$
 $\lambda = jS^{2}$ imaginary axis
(onstant Amplitude oscillating signal
 $e^{jS^{2n}} = (e^{jS^{2}})^{n} = J^{n}$ $J = e^{jS^{2}}$ $|J| = 1$
 $\lambda = jS^{2}$ imaginary axis $\rightarrow |J| = 1$ Unit circle

if I lies on the unit circle, In oscillates with constant amplitude

$$C^{\lambda n} \quad \lambda = a + jb \quad \text{in the LHP} \quad (a < o) \\ exponentially decaying \\ f' = e^{\lambda} = e^{a + jb} = e^{a} e^{jb} \\ |f'| = |e^{a}| = |e^{a}| = e^{a} \\ |f'| = e^{a} < 1 \quad \text{inside the Unit circle} \\ f^{n} : exponentially decaying \\ |f'| = e^{a} > 1 \quad \text{outside the Unit circle} \\ f^{n} : exponentially growing \\ |f'| = e^{a} > 1 \quad \text{outside the Unit circle} \\ |f'| =$$

λ.	-plane		t-plane	
the imag	ginary axis	\rightarrow	the unit circle	
the		\rightarrow	inside of the unit circle	
the	RHP	\rightarrow	outside of the unit circle	