Row Reduction (1A)

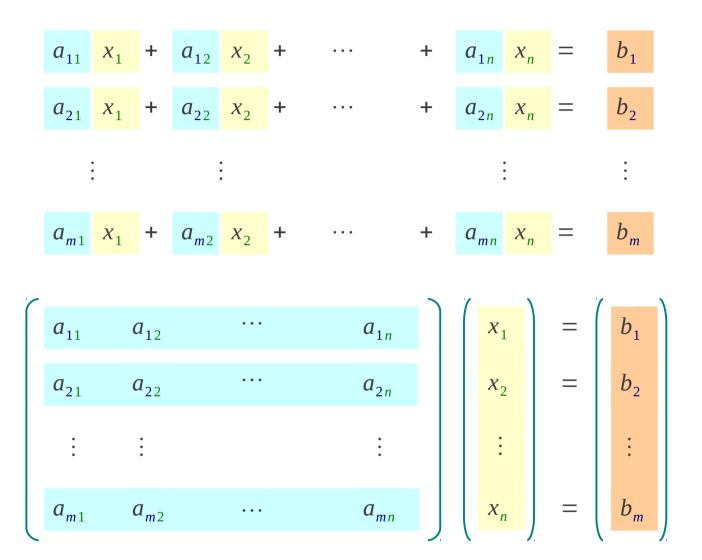
Copyright (c) 2012 -2015 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

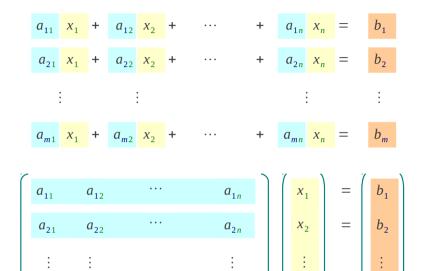
This document was produced by using OpenOffice and Octave.

Linear Equations



Row Reduciton (1A)

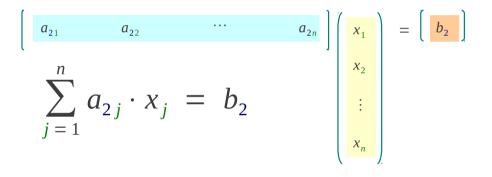
Linear Equations

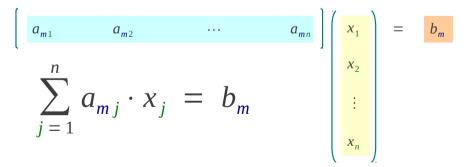


a_{mn}

 X_n

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \end{bmatrix}$$





Row Reduciton (1A)

 a_{m1}

*a*_{m2}

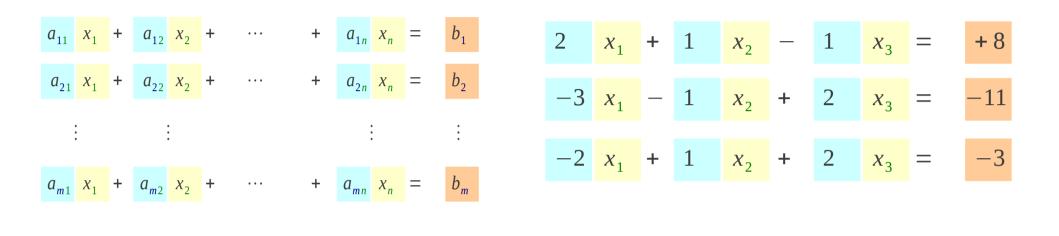
•••

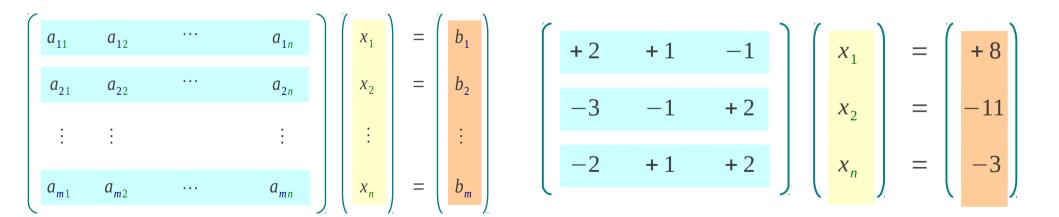
Young Won Lim 03/09/2015

 b_m

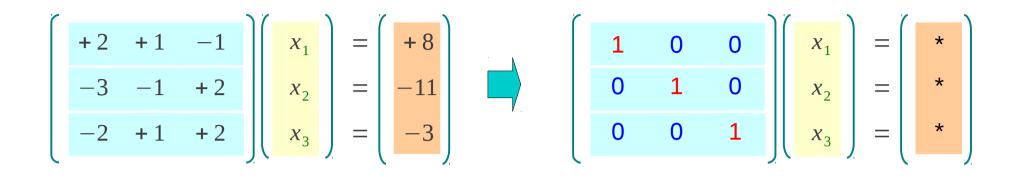
 \equiv

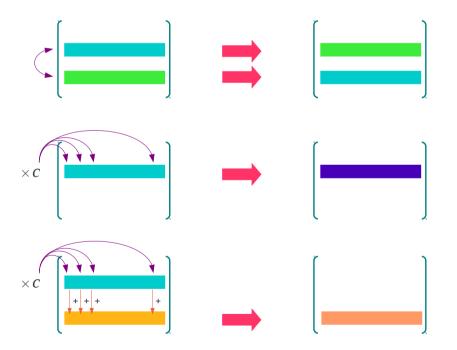
Example





Gauss-Jordan Elimination





Row Reduciton (1A)

$$+2x_1 + x_2 - x_3 = 8 (L_1)$$

$$-3x_1 - x_2 + 2x_3 = -11 (L_2)$$

 $-2x_1 + x_2 + 2x_3 = -3 \qquad (L_3)$

+ $1x_1$ + $\frac{1}{2}x_2 - \frac{1}{2}x_3 = 4$ $(\frac{1}{2} \times L_1)$ + 2/2 + 1/2 - 1/2 + 8/2

$$+ 1x_{1} + \frac{1}{2}x_{2} - \frac{1}{2}x_{3} = 4 \qquad (\frac{1}{2} \times L_{1})$$

$$-3x_{1} - x_{2} + 2x_{3} = -11 \qquad (L_{2})$$

$$-2x_{1} + x_{2} + 2x_{3} = -3 \qquad (L_{3})$$

$$+ 1/2 - 1/2 + 4$$

$$-3 -1 + 2 -11$$

$$-2 + 1 + 2 -3$$

$+1x_{1} + \frac{1}{2}x_{2} - \frac{1}{2}x_{3} = +4$ $-3x_{1} - x_{2} + 2x_{3} = -11$ $-2x_{1} + x_{2} + 2x_{3} = -3$	$egin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ -3 & -1 & +2 & -11 \\ -2 & +1 & +2 & -3 \end{bmatrix} $
$+3x_1 + \frac{3}{2}x_2 - \frac{3}{2}x_3 = +12$ $-3x_1 - x_2 + 2x_3 = -11$	$(3 \times L_1)$ (L_2)	+3 +3/2 -3/2 +12 -3 -1 +2 -11
$+2x_1 + \frac{2}{2}x_2 - \frac{2}{2}x_3 = +8$ -2x_1 + x_2 + 2x_3 = -3	$\begin{pmatrix} 2 \times L_1 \end{pmatrix}$ (L_3)	+2 +2/2 -2/2 +8 -2 +1 +2 -3
$+1x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 = +4$	(L_1)	+1 +1/2 -1/2 +4
$0x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 = +1$ $0x_1 + 2x_2 + 1x_3 = +5$	$(3 \times L_1 + L_2)$ $(2 \times L_1 + L_3)$	0 +1/2 +1/2 +1 0 +2 +1 +5

$$0x_1 + 1x_2 + 1x_3 = +2$$
 $(2 \times L_2)$ $0 +1 +1 +2$

$$+ 1x_{1} + \frac{1}{2}x_{2} - \frac{1}{2}x_{3} = + 4 \qquad (L_{1})$$

$$0x_{1} + 1x_{2} + 1x_{3} = + 2 \qquad (2 \times L_{2})$$

$$0x_{1} + 2x_{2} + 1x_{3} = + 5 \qquad (L_{3})$$

$$+ 1 + 1/2 - 1/2 \qquad + 4 \\ 0 \qquad (+1) + 1 \qquad + 2 \\ 0 \qquad (+1) + 1 \qquad + 2 \\ 0 \qquad + 2 \qquad + 1 \qquad + 5$$

 (L_3)

$$+1x_{1} + \frac{1}{2}x_{2} - \frac{1}{2}x_{3} = +4 \qquad (L_{1})$$
$$0x_{1} + 1x_{2} + 1x_{3} = +2 \qquad (L_{2})$$

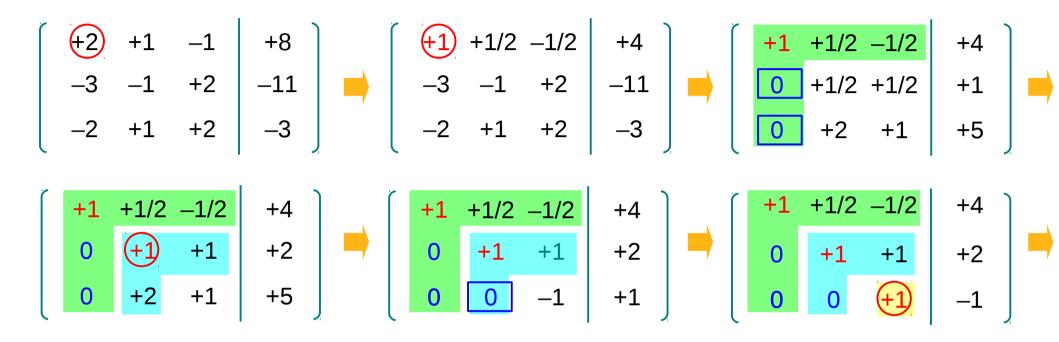
 $0x_1 + 2x_2 + 1x_3 = +5$

$$\left[\begin{array}{cccc} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & +2 & +1 & +5 \end{array} \right]$$

$$0x_1 - 0x_2 + 1x_3 = -1$$
 $(-1 \times L_3)$ 0 0 +1 -1

Row Reduciton (1A)

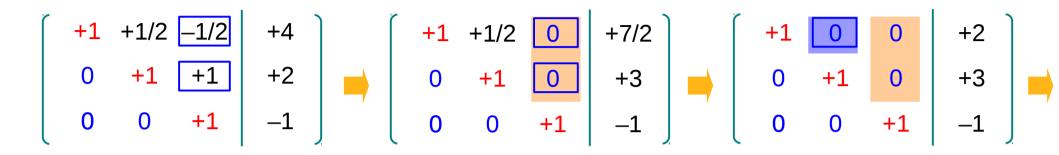
Forward Phase



Forward Phase - Gaussian Elimination

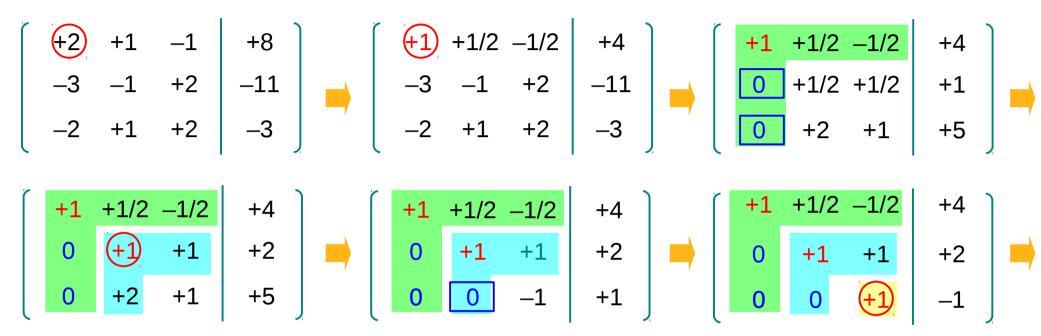
$+1x_{1} + \frac{1}{2}x_{2} - \frac{1}{2}x_{3} = +4$ $0x_{1} + 1x_{2} + 1x_{3} = +2$ $0x_{1} + 0x_{2} + 1x_{3} = -1$	$egin{array}{llllllllllllllllllllllllllllllllllll$		+1 0 0	+1/2 +1 0	-1/2 +1 +1	+4 +2 -1
$0x_1 + 0x_2 + \frac{1}{2}x_3 = -\frac{1}{2} + 1x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 = +4$	$\begin{array}{c} (+\frac{1}{2} \times L_3) \\ (L_1) \end{array}$		0	0	+1/2 -1/2	-1/2
$0x_1 + 0x_2 - 1x_3 = +1$ $0x_1 + 1x_2 + 1x_3 = +2$	$\begin{array}{c} (-1 \times L_3) \\ (L_2) \end{array}$				-1 +1	
$+1x_1 + \frac{1}{2}x_2 + 0x_3 = +\frac{7}{2}$ $0x_1 + 1x_2 + 0x_3 = +3$	$\begin{array}{c} \left(+\frac{1}{2} \times L_3 + L_1 \right) \\ \left(-1 \times L_3 + L_2 \right) \end{array}$	ſ			0	+7/2 +3
$0x_1 + 0x_2 + 1x_3 = -1$	(L_3)	l				-1

Backward Phase

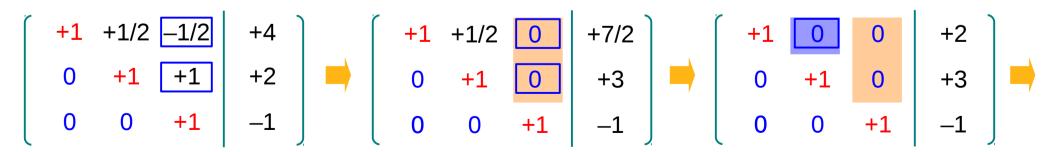


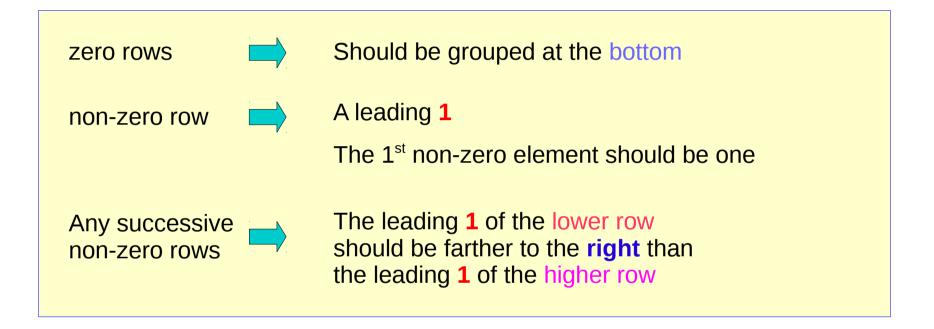
Gauss-Jordan Elimination

Forward Phase – Gaussian Elimination



Backward Phase – Guass-Jordan Elimination

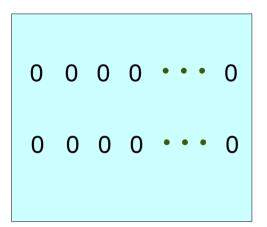


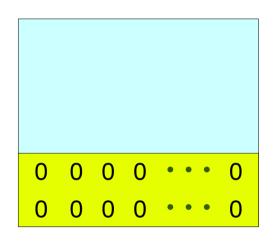


REF: Row Echelon Forms (2)

zero rows

Should be grouped at the bottom



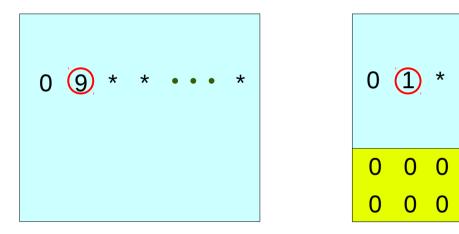


REF: Row Echelon Forms (3)

non-zero row

A leading one

The $\mathbf{1}^{st}$ non-zero element should be one



*

 $\mathbf{0}$

••• 0

• • •

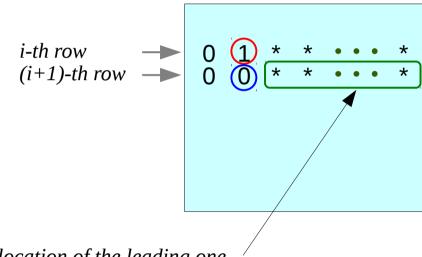
0

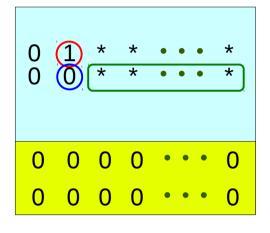
 $\mathbf{0}$

REF: Row Echelon Forms (4)

Any successive non-zero rows

The leading **1** of the lower row should be farther to the **right** than the leading **1** of the higher row





The possible location of the leading one

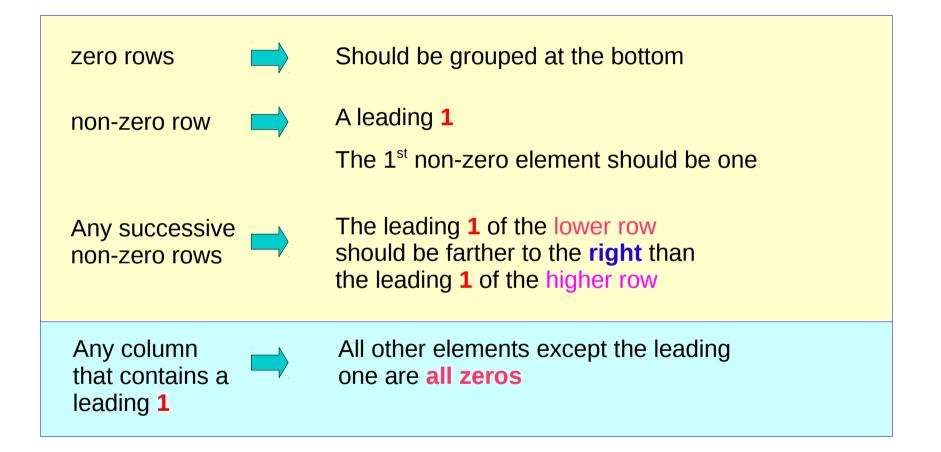
 Could be like this
 0
 0
 1
 *
 *

 Or like this
 0
 0
 0
 1
 *

 Or like this
 0
 0
 0
 1
 *

Row Reduciton (1A)

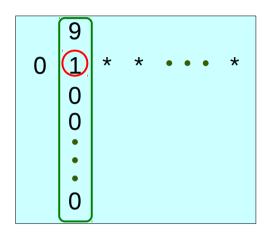
RREF: Reduced Row Echelon Forms (1)

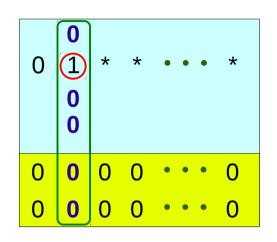


RREF: Reduced Row Echelon Forms (2)

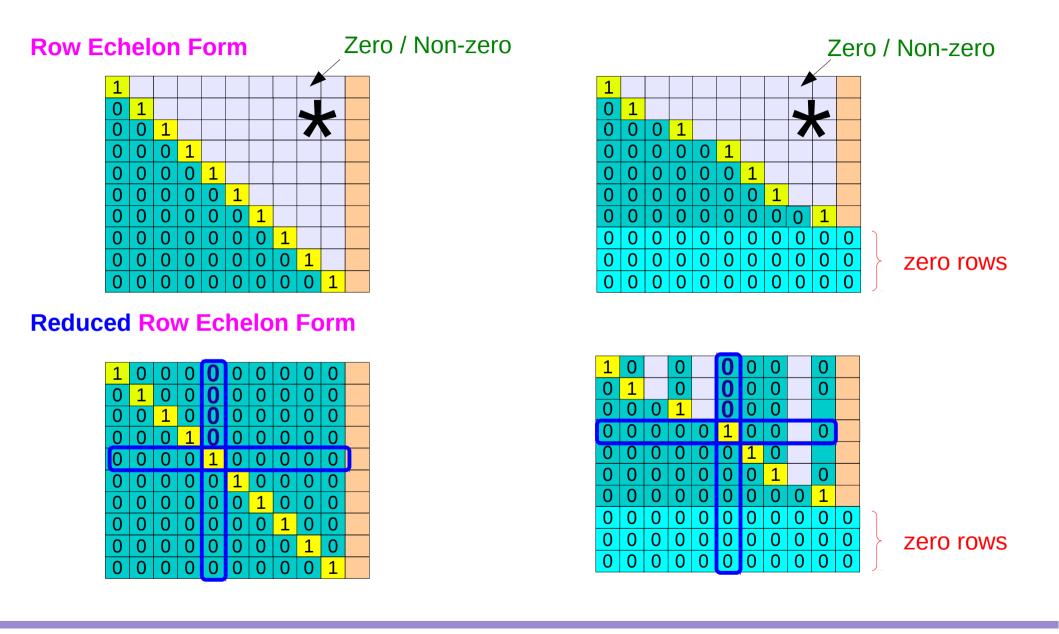
Any column that contains a leading one

All other elements except the leading one are **all zeros**

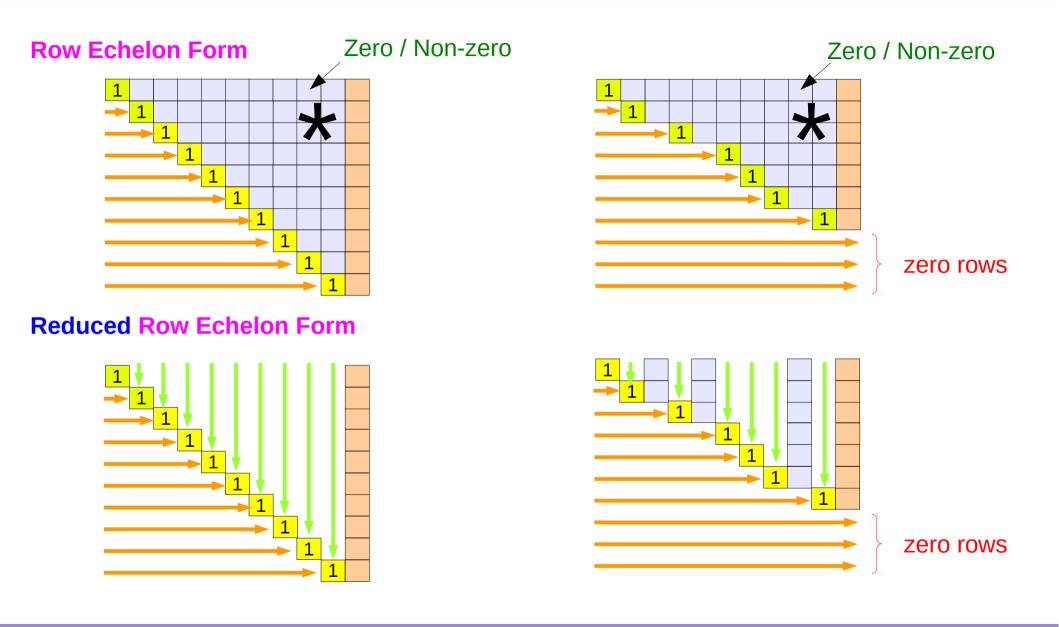




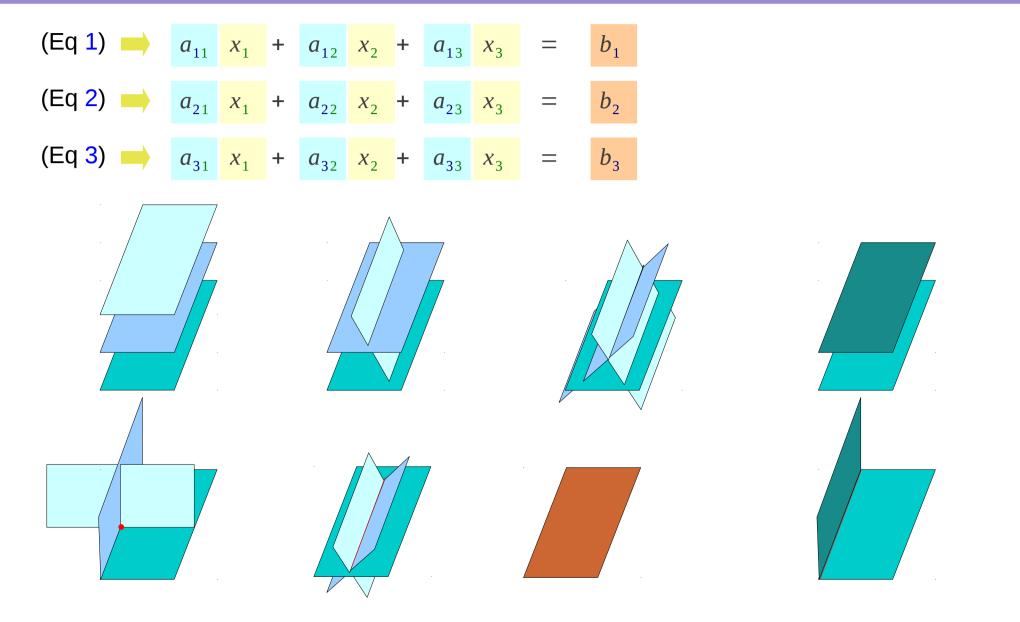
Examples



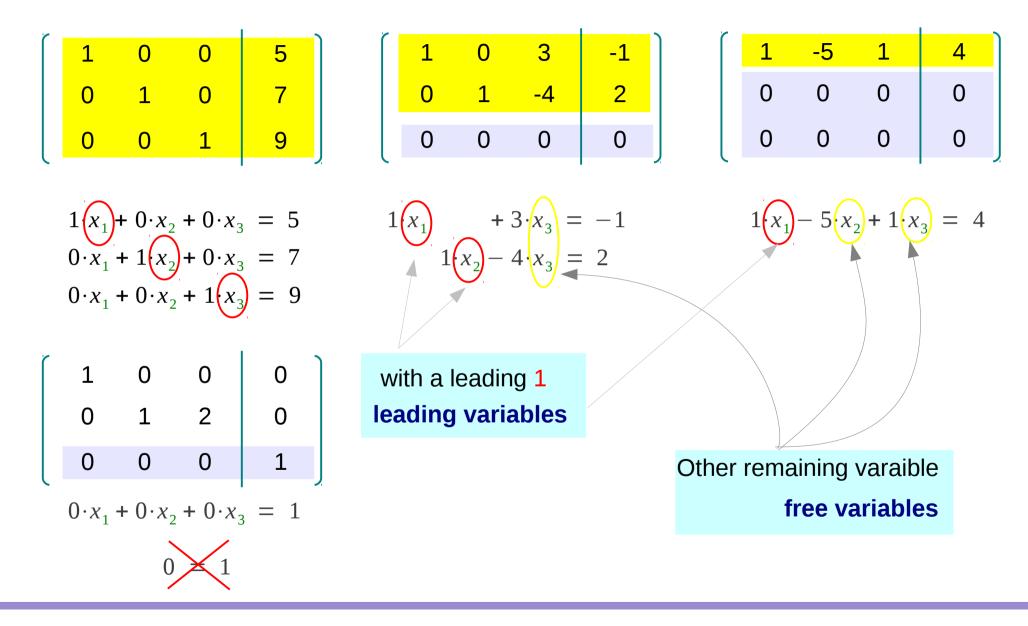
Examples



Linear Systems of 3 Unknowns



Leading and Free Variables



Free Variables as Parameters (1)

$$1x_{1} + 0 \cdot x_{2} + 0 \cdot x_{3} = 5$$

$$0 \cdot x_{1} + 1x_{2} + 0 \cdot x_{3} = 7$$

$$0 \cdot x_{1} + 0 \cdot x_{2} + 1x_{3} = 9$$

$$1 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + 3 \begin{pmatrix} x_3 \\ x_3 \end{pmatrix} = -1$$
$$1 \begin{pmatrix} x_2 \\ x_3 \end{pmatrix} = 2$$

$$1(x_1) - 5(x_2) + 1(x_3) = 4$$

Solve for a leading variable

$$\begin{cases} x_1 = 5 \\ x_2 = 7 \\ x_3 = 9 \end{cases} \begin{cases} x_1 = -1 - 3 \cdot x_3 \\ x_2 = 2 + 4 \cdot x_3 \end{cases} \qquad x_1 = 4 + 5 \cdot x_2 - 1 \cdot x_3$$

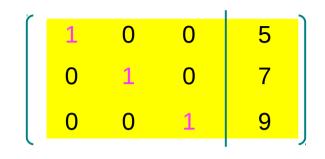
Treat a free variable $x_3 = t$ as a parameter

$$x_2 = s \quad x_3 = t$$

$$\begin{cases} x_{1} = 5 \\ x_{2} = 7 \\ x_{3} = 9 \end{cases} \begin{cases} x_{1} = -1 - 3t \\ x_{2} = 2 + 4t \\ x_{3} = t \end{cases} \begin{cases} x_{1} = 4 + 5 \cdot s - 1 \cdot t \\ x_{2} = s \\ x_{3} = t \end{cases}$$

Row Reduciton (1A)

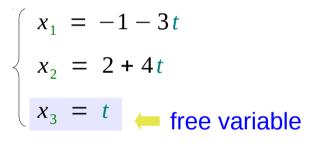
Free Variables as Parameters (2)



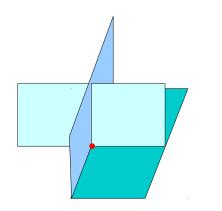
1	0	3	-1
0	1	-4	2
0	0	0	0

1	-5	1	4
0	0	0	0
0	0	0	0

 $\begin{cases} x_1 = 5 \\ x_2 = 7 \\ x_3 = 9 \end{cases}$



x ₁	=	4	+ $5 \cdot s - 1 \cdot t$
<i>x</i> ₂	=	S	듣 free variable
<i>x</i> ₃	=	t	듣 free variable



28

Young Won Lim 03/09/2015

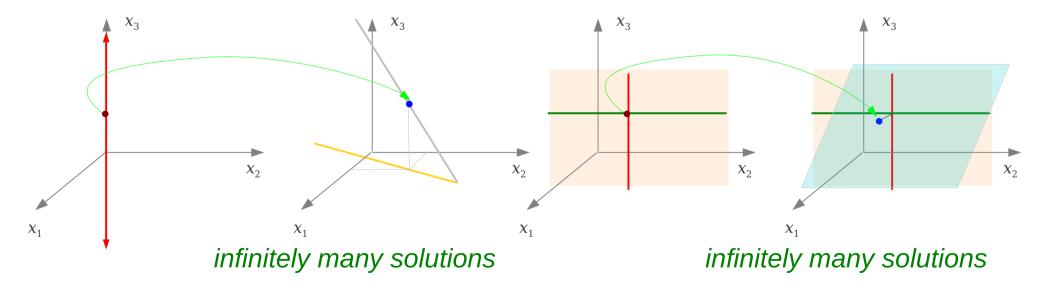
Free Variables as Parameters (3)

$$\begin{cases} x_1 = -1 - 3t \\ x_2 = 2 + 4t \\ x_3 = t \end{cases}$$
 free variable

$$\begin{cases} x_1 = 4 + 5 \cdot s - 1 \cdot t \\ x_2 = s & \leftarrow \text{ free variable} \\ x_3 = t & \leftarrow \text{ free variable} \end{cases}$$

 $4x_1 + 3x_2 = 2$

$$x_1 - 5x_2 + x_3 = 4$$



Row Reduciton (1A)

29

A linear system with at least one solution

A linear system with no solutions

A linear system with infinitely many solutions

Solve for a leading variable

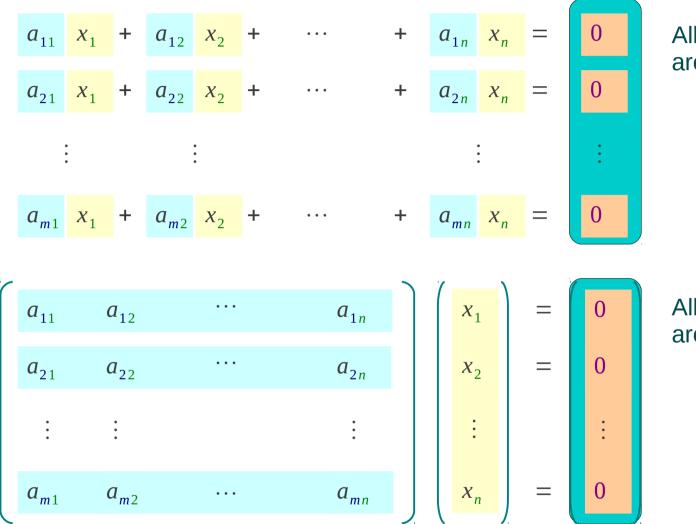
Treat a free variable as a parameter

A set of parametric equations

All solutions can be obtained by assigning numerical values to those parameters

Called a general solution

Homogeneous System



All constant terms are zero

All constant terms are zero

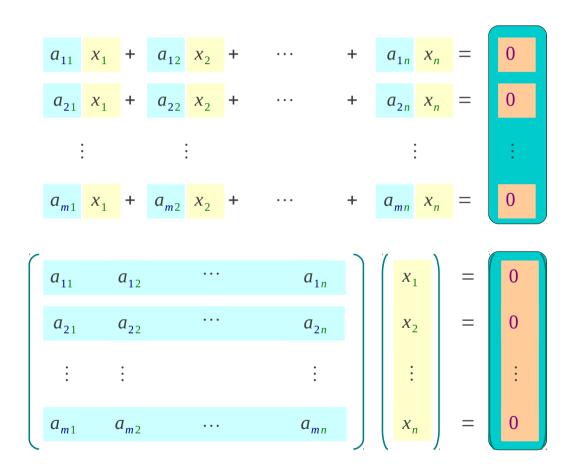
Row Reduciton (1A)

Solutions of a Homogeneous System

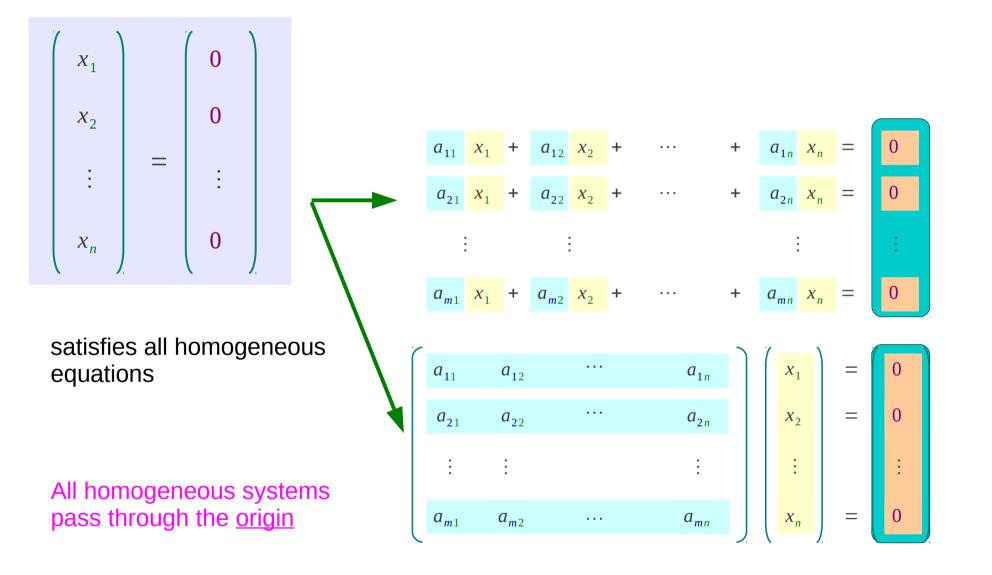
All homogeneous systems pass through the <u>origin</u>

The homogeneous system has

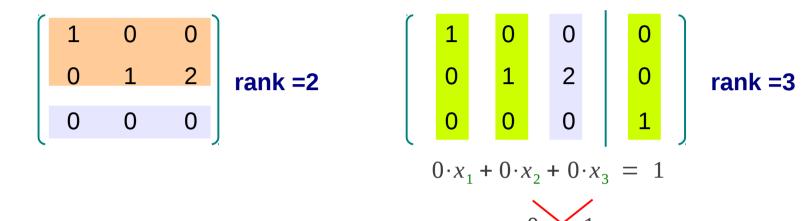
- * only the trivial solution
- * <u>many solutions</u> in addition to the trivial solution



Trivial Solution



Impossible Solution



 $rank(\mathbf{A}) < rank(\mathbf{A}|\mathbf{b})$

Linear System Ax = B

$$A \quad x = 0$$

Always consistent

rank(A) = nunique solution x = 0rank(A) < nInfinitely many solution n - r parameters

$$A = [a_{ij}]_{m \times n}$$

m equations

n unknowns

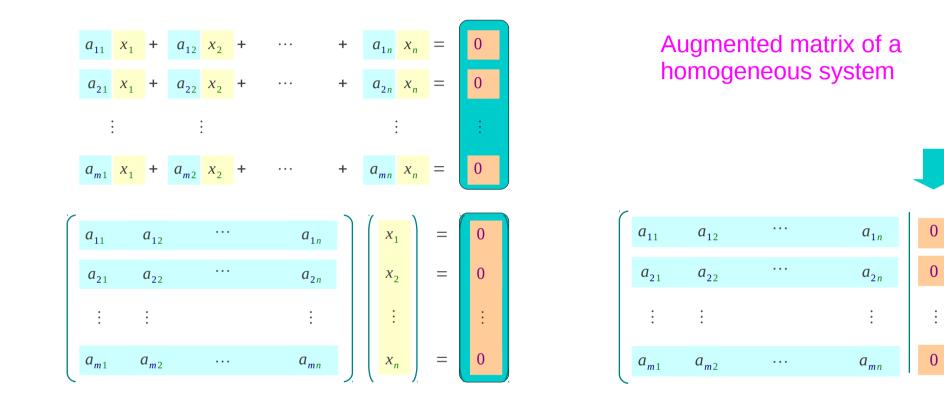
 $A \quad x = b$

rank(A) = rank(A|b): Consistent rank(A) = nunique solution $x \neq 0$ rank(A) < n

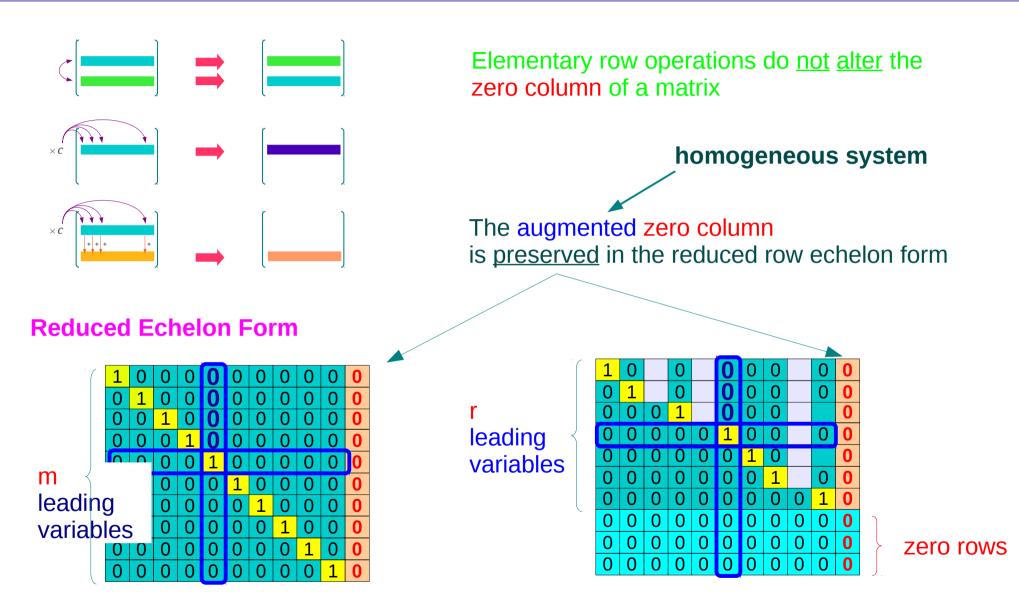
Infinitely many solution n-r parameters

rank(A) < rank(A|b)
: Inconsistent</pre>

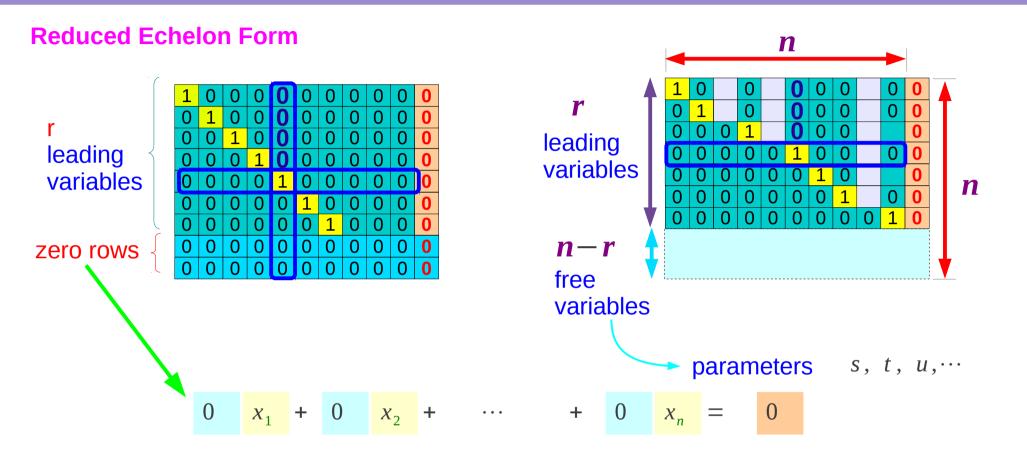
Augmented Matrix



Reduced Row Echelon Form



Free Variable Theorem

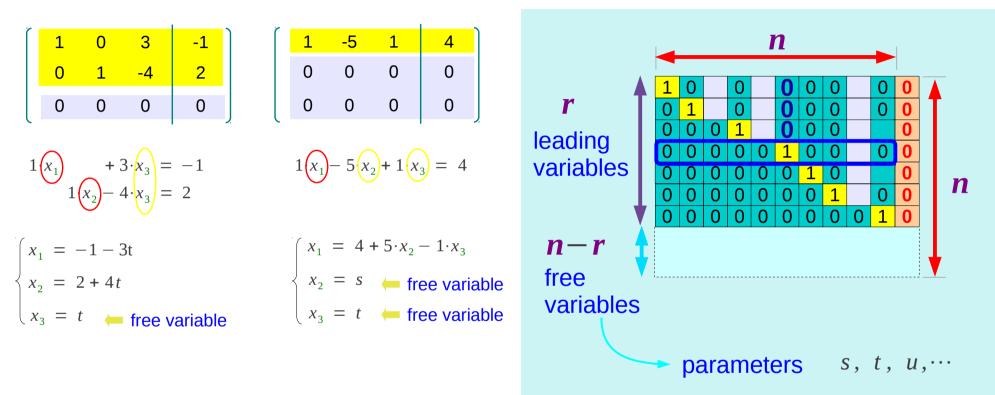


A homogeneous linear system with *n* unknowns

If the reduced row echelon form of its augmented matrix has r non-zero rows $\rightarrow n - r$ free variables $\rightarrow infinitely many solutions$

Free Variable Theorem Example

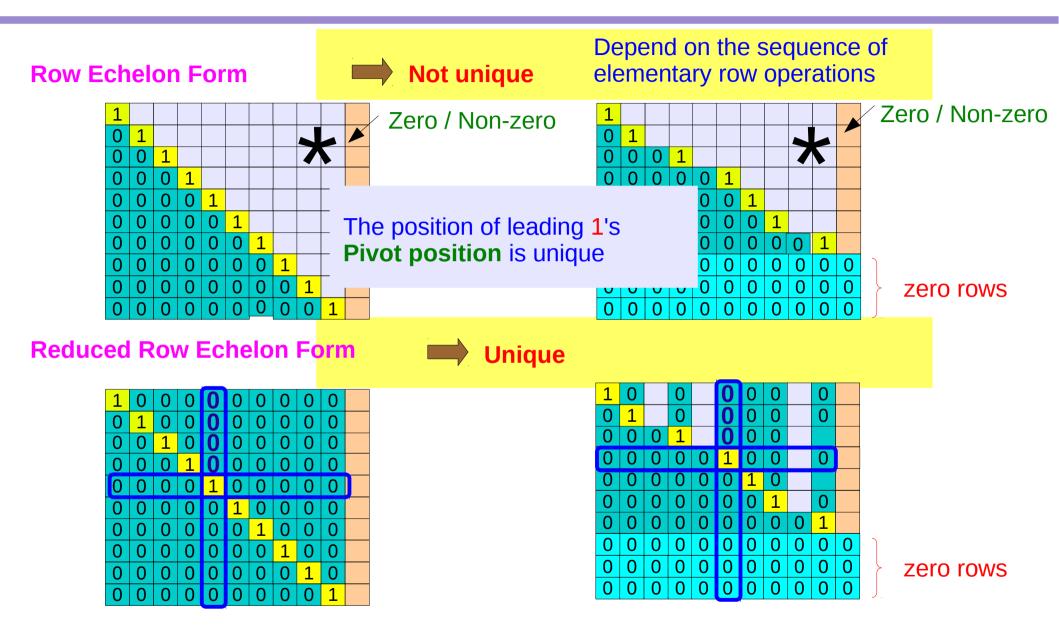
Reduced Echelon Form



A homogeneous linear system with *n* unknowns

If the reduced row echelon form of its augmented matrix has r non-zero rows $\rightarrow n - r$ free variables $\rightarrow infinitely many solutions$

Pivot Positions



Pulse

References

- [1] http://en.wikipedia.org/
- [2] Anton & Busby, "Contemporary Linear Algebra"
- [3] Anton & Rorres, "Elementary Linear Algebra"