Row Reduction (1A)

Copyright (c) 2012-2015 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Linear Equations

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m} \\
& \left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right)
\end{aligned}
$$

Linear Equations

$$
\begin{aligned}
& \begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2}
\end{array} \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m} \\
& \left.\begin{array}{|ccc}
\begin{array}{cc}
a_{11} & a_{12} \\
a_{12}
\end{array} \\
\sum_{j=1}^{n} a_{1 j} \cdot x_{j}=b_{1}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(b_{1}\right) \\
& \left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right) \\
& \left.\begin{array}{cccc}
\begin{array}{ccc}
a_{21} & a_{22} & \cdots
\end{array} a_{2 n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\sum_{j=1}^{n} a_{2 j} \cdot x_{j}= \\
\vdots \\
x_{n}
\end{array}\right)=\left(b_{2}\right) \\
& \left.\begin{array}{cccc}
\left.\begin{array}{ccc}
a_{m 1} & a_{m 2} & \ldots \\
a_{m n}
\end{array}\right) \\
\sum_{j=1}^{n} a_{m j} \cdot x_{j}=b_{m} & \\
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=b_{m}
\end{aligned}
$$

Example

$$
\left(\begin{array}{lll}
+2 & +1 & -1 \\
-3 & -1 & +2 \\
-2 & +1 & +2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{n}
\end{array}\right)=\left(\begin{array}{l}
+8 \\
-11 \\
-3
\end{array}\right)
$$

$$
\begin{aligned}
& \begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2}
\end{array} \\
& 2 x_{1}+1 x_{2}-1 x_{3}=+8 \\
& -3 x_{1}-1 x_{2}+2 x_{3}=-11 \\
& -2 x_{1}+1 x_{2}+2 x_{3}=-3 \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{aligned}
$$

Gauss-Jordan Elimination

$$
\begin{aligned}
& \left(\begin{array}{ccc}
+2 & +1 & -1 \\
-3 & -1 & +2 \\
-2 & +1 & +2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
+8 \\
-11 \\
-3
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
* \\
* \\
*
\end{array}\right) \\
& \bullet(\square) \quad \square) \\
& \times \begin{array}{ll}
1+1 & 1 \\
&
\end{array} \\
& \longrightarrow \quad[\\
& \times c\left(\begin{array}{cc}
1+1 & 1 \\
++++ & ++ \\
n+1
\end{array}\right]
\end{aligned}
$$

Gauss-Jordan Elimination - Step 1

$$
\left.\left.\begin{array}{ll}
+2 x_{1}+x_{2}-x_{3}=8 & \left(L_{1}\right) \\
-3 x_{1}-x_{2}+2 x_{3}=-11 & \left(L_{2}\right) \\
-2 x_{1}+x_{2}+2 x_{3}=-3 & \left(L_{3}\right) \\
+1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}=4 & \left(\frac{1}{2} \times L_{1}\right) \\
+1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}=4 & \left(\frac{1}{2} \times L_{1}\right) \\
-3 x_{1}-x_{2}+2 x_{3}=-11 & \left(L_{2}\right) \\
-2 & +1 \\
+2 x_{1}+x_{2}+2 x_{3}=-3 & \left(L_{3}\right)
\end{array}\right] \begin{array}{cc|c}
+2 & -11 \\
-3
\end{array}\right]
$$

Gauss-Jordan Elimination - Step 2

$$
\left.\begin{array}{rlrl}
+1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3} & =+4 & \left(L_{1}\right) \\
-3 x_{1}-x_{2}+2 x_{3} & =-11 & \left(L_{2}\right) \\
-2 x_{1}+x_{2}+2 x_{3} & =-3 & \left(L_{3}\right) & \left(\begin{array}{ccc}
+1 & +1 / 2 & -1 / 2 \\
\hline-3 & -1 & +2
\end{array}\right. \\
+4 \\
-2 & +1 & +2 & -3
\end{array}\right]
$$

Gauss-Jordan Elimination - Step 3

Gauss-Jordan Elimination - Step 4

$$
\begin{align*}
+1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3} & =+4 \tag{1}\\
0 x_{1}+1 x_{2}+1 x_{3} & =+2 \\
0 x_{1}+2 x_{2}+1 x_{3} & =+5 \tag{3}
\end{align*}
$$

$$
\left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & +2 & +1 & +5
\end{array}\right]
$$

$$
\begin{array}{ll}
0 x_{1}-2 x_{2}-2 x_{3}=-4 & --2 \times L_{2} \\
0 x_{1}+2 x_{2}+1 x_{3}=+5 & \left(L_{3}\right)
\end{array}
$$

$$
\begin{array}{llll}
0 & -2 & -2 & -4 \\
0 & +2 & +1 & +5
\end{array}
$$

$$
\begin{array}{rlll}
+1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3} & =+4 & \left(L_{1}\right) \\
0 x_{1}+1 x_{2}+1 x_{3} & =+2 & \left(L_{2}\right) \\
0 x_{1}+0 x_{2}-1 x_{3} & =+1 & \left.-2 \times L_{2}+L_{3}\right)
\end{array} \quad\left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & 0 & -1 & +1
\end{array}\right]
$$

Gauss-Jordan Elimination - Step 5

Forward Phase

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
+2 & +1 & -1 & +8 \\
-3 & -1 & +2 & -11 \\
-2 & +1 & +2 & -3
\end{array}\right) \Rightarrow\left[\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
-3 & -1 & +2 & -11 \\
-2 & +1 & +2 & -3
\end{array}\right) \Rightarrow\left[\begin{array}{ccc}
+1 & +1 / 2 & -1 / 2 \\
\hline 0 & +1 / 2 & +1 / 2
\end{array}+4\right. \\
& \left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & +2 & +1 & +5
\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & 0 & -1 & +1
\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & 0 & +1 & -1
\end{array}\right)
\end{aligned}
$$

Forward Phase - Gaussian Elimination

Gauss-Jordan Elimination - Step 6

$$
\begin{array}{rlrl|l}
+1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3} & =+4 & \left(L_{1}\right) \tag{1}\\
0 x_{1}+1 x_{2}+1 x_{3} & =+2 & \left(L_{2}\right) \\
0 x_{1}+0 x_{2}+1 x_{3} & =-1 & \left(L_{3}\right) \\
0 x_{1}+0 x_{2}+\frac{1}{2} x_{3} & =-\frac{1}{2} & ++\frac{1}{2} \times L_{3} \\
+1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3} & =+4 & \left(L_{1}\right)
\end{array} \quad\left(\begin{array}{cccc|c}
+1 & +1 / 2 & \boxed{-1 / 2} & +4 \\
0 & +1 & \boxed{+1} & +2 \\
0 & 0 & +1 & -1
\end{array}\right]
$$

Gauss-Jordan Elimination - Step 7

$$
\begin{align*}
&+1 x_{1}+\frac{1}{2} x_{2}+0 x_{3}=+\frac{7}{2} \tag{1}\\
& 0 x_{1}+1 x_{2}+0 x_{3}=+3 \\
& 0 x_{1}+0 x_{2}+1 x_{3}=-1 \\
&\left(L_{2}\right) \\
&\left(L_{3}\right)
\end{align*}
$$

$$
\left(\begin{array}{ccc|c}
+1 & +1 / 2 & 0 & +7 / 2 \\
0 & +1 & 0 & +3 \\
0 & 0 & +1 & -1
\end{array}\right)
$$

$$
0 x_{1}-\frac{1}{2} x_{2}+0 x_{3}=-\frac{3}{2} \quad-\frac{1}{2} \times L_{2}
$$

$+1 x_{1}+0 x_{2}-0 x_{3}=+2$
$\left(L_{1}\right)$

$$
\begin{array}{cccc}
0 & -1 / 2 & 0 & -3 / 2 \\
+1 & +1 / 2 & 0 & +7 / 2
\end{array}
$$

$+1 x_{1}+0 x_{2}-0 x_{3}$	$=+2$
$0 x_{1}+1 x_{2}+0 x_{3}$	$=+3$
$0 x_{1}+0 x_{2}+1 x_{3}$	$=-1$

0 \& +1 \& 0 \& +3

0 \& 0 \& +1 \& -1\end{array}\right)\)

Backward Phase

$$
\left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & 0 & +1 & -1
\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}
+1 & +1 / 2 & 0 & +7 / 2 \\
0 & +1 & 0 & +3 \\
0 & 0 & +1 & -1
\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}
+1 & 0 & 0 & +2 \\
0 & +1 & 0 & +3 \\
0 & 0 & +1 & -1
\end{array}\right)
$$

Gauss-Jordan Elimination

Forward Phase - Gaussian Elimination

$\left(\begin{array}{ccc|c}\oplus 2 & +1 & -1 & +8 \\ -3 & -1 & +2 & -11 \\ -2 & +1 & +2 & -3\end{array}\right) \Rightarrow\left[\begin{array}{ccc|c}\oplus 1 & +1 / 2 & -1 / 2 & +4 \\ -3 & -1 & +2 & -11 \\ -2 & +1 & +2 & -3\end{array}\right] \Rightarrow\left(\begin{array}{ccc|c}+1 & +1 / 2 & -1 / 2 & +4 \\ 0 & +1 / 2 & +1 / 2 & +1 \\ 0 & +2 & +1 & +5\end{array}\right]$
$\left(\begin{array}{ccc|c}+1 & +1 / 2 & -1 / 2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & +2 & +1 & +5\end{array}\right)$
Backward Phase - Guass-Jordan Elimination
$\left(\begin{array}{ccc|c}+1 & +1 / 2 & -1 / 2 & +4 \\ 0 & +1 & -+1 & +2 \\ 0 & 0 & +1 & -1\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}+1 & +1 / 2 & 0 & +7 / 2 \\ 0 & +1 & 0 & +3 \\ 0 & 0 & +1 & -1\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}+1 & 0 & 0 & +2 \\ 0 & +1 & 0 & +3 \\ 0 & 0 & +1 & -1\end{array}\right)$

REF: Row Echelon Forms (1)

zero rows \quadShould be grouped at the bottom non-zero row The $1^{\text {st }}$ non-zero element should be one
Any successive non-zero rowsThe leading 1 of the lower row should be farther to the right than the leading 1 of the higher row

zero rows
Should be grouped at the bottom

REF: Row Echelon Forms (3)

A leading one
The $1^{\text {st }}$ non-zero element should be one

REF: Row Echelon Forms (4)

Any successive

non-zero rows | The leading 1 of the lower row |
| :--- |
| should be farther to the right than |
| the leading 1 of the higher row |

The possible location of the leading one

Could be like this	0 (0) (1)
Or like this	0 (0) (0) 1) . . *
Or like this	0 (0) (0) -1

RREF: Reduced Row Echelon Forms (1)

\(\left.$$
\begin{array}{|ll|}\hline \text { zero rows } \\
\text { non-zero row } \\
\begin{array}{l}\text { Any successive } \\
\text { non-zero rows }\end{array} \rightarrow \begin{array}{l}\text { The leadd be grouped at the bottom } \\
\text { The } 1^{\text {st }} \text { non-zero element should be one } 1\end{array}
$$

should be farther to the right than

the leading 1 of the higher row\end{array}\right\}\)| All other elements except the leading |
| :--- |
| one are all zeros |

RREF: Reduced Row Echelon Forms (2)

Any column that contains a leading one

All other elements except the leading one are all zeros

Examples

Row Echelon Form
Zero / Non-zero

1									
0	1								
0	0	1							
0	0	0	1						
0	0	0	0	1					
0	0	0	0	0	1				
0	0	0	0	0	0	1			
0	0	0	0	0	0	0	1		
0	0	0	0	0	0	0	0	1	
0	0	0	0	0	0	0	0	0	1

Reduced Row Echelon Form

zero rows

Examples

Reduced Row Echelon Form

zero rows

Linear Systems of 3 Unknowns

(Eq 1) $\Rightarrow a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1}$
$(E q 2) \Rightarrow a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=b_{2}$
$(E q 3) \Rightarrow a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3}$

Leading and Free Variables

$$
\begin{aligned}
& \left(\begin{array}{lll|l}
1 & 0 & 0 & 5 \\
0 & 1 & 0 & 7 \\
0 & 0 & 1 & 9
\end{array}\right) \quad\left(\begin{array}{lll|l}
1 & 0 & 3 & -1 \\
0 & 1 & -4 & 2 \\
0 & 0 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{lll|l}
1 & -5 & 1 & 4 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& 1\left(x_{1}\right)+0 \cdot x_{2}+0 \cdot x_{3}=5 \\
& \left.0 \cdot x_{1}+1 \widehat{x_{2}}\right)+0 \cdot x_{3}=7 \\
& 0 \cdot x_{1}+0 \cdot x_{2}+1 \cdot x_{3}=9 \\
& 0 \cdot x_{1}+0 \cdot x_{2}+0 \cdot x_{3}=1 \\
& \text { with a leading } 1 \\
& \text { leading variables }
\end{aligned}
$$

Free Variables as Parameters (1)

$$
\begin{array}{lr}
1\left(x_{1}\right)+0 \cdot x_{2}+0 \cdot x_{3}=5 & 1\left(x_{1}\right)+3 \cdot x_{3}=-1 \\
0 \cdot x_{1}+1\left(x_{2}\right)+0 \cdot x_{3}=7 & 1\left(x_{2}\right)-4 \cdot x_{3}=2 \\
0 \cdot x_{1}+0 \cdot x_{2}+1 \overparen{x_{3}}=9 &
\end{array}
$$

Solve for a leading variable

$$
\begin{aligned}
& x_{1}=5 \\
& x_{2}=7 \\
& x_{3}=9
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=-1-3 \cdot x_{3} \\
& x_{2}=2+4 \cdot x_{3}
\end{aligned}
$$

Treat a free variable as a parameter

$$
\begin{aligned}
& x_{1}=5 \\
& x_{2}=7 \\
& x_{3}=9
\end{aligned}
$$

$$
x_{3}=t
$$

$$
\left\{\begin{array}{l}
x_{1}=-1-3 t \\
x_{2}=2+4 t \\
x_{3}=t
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
x_{1}=4+5 \cdot s-1 \cdot t \\
x_{2}=s \\
x_{3}=t
\end{array}\right.
$$

Free Variables as Parameters (2)
$\left(\begin{array}{lll|l}1 & 0 & 0 & 5 \\ 0 & 1 & 0 & 7 \\ 0 & 0 & 1 & 9\end{array}\right]$
$\left(\begin{array}{ccc|c}1 & 0 & 3 & -1 \\ 0 & 1 & -4 & 2 \\ 0 & 0 & 0 & 0\end{array}\right)$
$\left(\begin{array}{ccc|c}1 & -5 & 1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$

$$
\begin{aligned}
& x_{1}=5 \\
& x_{2}=7 \\
& x_{3}=9
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=-1-3 t \\
& x_{2}=2+4 t \\
& x_{3}=t \quad \text { free variable }
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=4+5 \cdot s-1 \cdot t \\
& x_{2}=s \\
& x_{3}=t \quad \text { free variable }
\end{aligned}
$$

Free Variables as Parameters (3)

$$
\begin{aligned}
& x_{1}=-1-3 t \\
& x_{2}=2+4 t \\
& x_{3}=t \quad \text { free variable }
\end{aligned}
$$

$$
\left\{\begin{array}{l}
x_{1}=4+5 \cdot s-1 \cdot t \\
x_{2}=s \quad \text { free variable } \\
x_{3}=t \quad \text { free variable }
\end{array}\right.
$$

$$
4 x_{1}+3 x_{2}=2
$$

$$
x_{1}-5 x_{2}+x_{3}=4
$$

infinitely many solutions

infinitely many solutions

Consistent Linear System

A linear system with at least one solution

A Consistent Linear System

A linear system with no solutions

A Inconsistent Linear System

General Solution

A linear system with infinitely many solutions

Solve for a leading variable
Treat a free variable as a parameter

A set of parametric equations

All solutions can be obtained
by assigning numerical values to those parameters

Called a general solution

Homogeneous System

$$
\begin{aligned}
& \begin{array}{ccc}
a_{11} x_{1}+a_{12} x_{2}+\ldots & +a_{1 n} x_{n}=0 \\
a_{21} x_{1}+a_{22} x_{2}+\ldots & +a_{2 n} x_{n}=0 \\
\vdots & \vdots & \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots & +a_{m n} x_{n}=0
\end{array} \\
& \left.\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right) \\
& \text { All constant terms } \\
& \text { are zero } \\
& \text { All constant terms } \\
& \text { are zero }
\end{aligned}
$$

Solutions of a Homogeneous System

All homogeneous systems pass through the origin

The homogeneous system has

* only the trivial solution
* many solutions
in addition to the trivial solution

Trivial Solution

Impossible Solution

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right] \text { rank =2 } \begin{gathered}
{\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \text { rank }=\mathbf{3} \text { ? }} \\
0 \cdot x_{1}+0 \cdot x_{2}+0 \cdot x_{3}=1 \\
0 \times 1
\end{gathered}
$$

$$
\operatorname{rank}(\boldsymbol{A})<\operatorname{rank}(\boldsymbol{A} \mid \boldsymbol{b})
$$

Linear System Ax = B

$A x=0$

Always consistent
$\operatorname{rank}(\boldsymbol{A})=n$
unique solution $\quad x=0$
$\operatorname{rank}(\boldsymbol{A})<n$
Infinitely many solution
$n-r$ parameters
$\mathbf{A}=\left[a_{i j}\right]_{m \times n}$
m equations
n unknowns

$$
A x=b
$$

$$
\operatorname{rank}(\boldsymbol{A})=\operatorname{rank}(\boldsymbol{A} \mid \boldsymbol{b})
$$

: Consistent

```
rank(A)=n
    unique solution x}\not=\mathbf{0
rank}(\boldsymbol{A})<
        Infinitely many solution
        n-r parameters
```

$\operatorname{rank}(\boldsymbol{A})<\operatorname{rank}(\boldsymbol{A} \mid \boldsymbol{b})$
: Inconsistent
: Inconsistent

Augmented Matrix

$$
\begin{aligned}
& \begin{array}{cccc}
a_{11} x_{1}+a_{12} x_{2}+\ldots & +a_{1 n} x_{n}= \\
a_{21} x_{1}+a_{22} x_{2}+ & \ldots & +a_{2 n} x_{n}= \\
\vdots & \vdots & & \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots & \\
\vdots
\end{array} \\
& \left.\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
\\
x_{n}
\end{array}\right)=\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
\end{aligned}
$$

Augmented matrix of a

 homogeneous system

Reduced Row Echelon Form

Elementary row operations do not alter the zero column of a matrix
homogeneous system

The augmented zero column is preserved in the reduced row echelon form

Reduced Echelon Form

m

leading

variables | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

zero rows

Free Variable Theorem

Reduced Echelon Form

r \quad leading $\left\{\begin{array}{lll|l|l|l|l|l|l|l|l|}\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right.$

s, t, u, \cdots

$$
+0 \quad x_{n}=0
$$

A homogeneous linear system with \boldsymbol{n} unknowns

If the reduced row echelon form of its augmented matrix has r non-zero rows $\square \boldsymbol{n}-\boldsymbol{r}$ free variables

\longrightarrow infinitely many solutions

Free Variable Theorem Example

Reduced Echelon Form

$\left(\begin{array}{ccc|c}1 & 0 & 3 & -1 \\
0 & 1 & -4 & 2 \\
0 & 0 & 0 & 0\end{array}\right]$

$1\left(x_{1}+3 \cdot x_{3}\right.$	$=-1$
$1\left(x_{2}\right)-4 \cdot x_{3}$	$=2$

$\left\{\begin{array}{l}x_{1}=-1-3 t \\
x_{2}=2+4 t \\
x_{3}=t\end{array}\right.$
$\left[\begin{array}{ccc|c}1 & -5 & 1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
$1\left(x_{1}-5 x_{2}+1 x_{3}=4\right.$
$x_{1}=4+5 \cdot x_{2}-1 \cdot x_{3}$
$x_{2}=s \Leftarrow$ free variable
$x_{3}=t \Leftarrow$ free variable

A homogeneous linear system with \boldsymbol{n} unknowns

If the reduced row echelon form of its augmented matrix has r non-zero rows $\square \boldsymbol{n}-\boldsymbol{r}$ free variables

Pivot Positions

Row Echelon Form

Zero / Non-zero

Reduced Row Echelon Form

\square Unique

1	0		0	0	0	0	0		0
0	1		0		0	0	0		0
0	0	0	1		0	0	0		
0	0	0	0	0	1	0	0		0
0	0	0	0	0	0	1	0		
0	0	0	0	0	0	0	1		
0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

zero rows

Pulse

References

[1] http://en.wikipedia.org/
[2] Anton \& Busby, "Contemporary Linear Algebra"
[3] Anton \& Rorres, "Elementary Linear Algebra"

