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Fourier Transform

N Gaussian random variables

Fourier transform
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Energy and Average Power in time domain

N Gaussian random variables

a deterministic signal x(t)

xr(t) = x(t) —-T<t<T
[ASr 0 otherwise

the energy
_ [T o
E(T)_/ X2(1)dt
-T

the average power
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Measuring Average Power

N Gaussian random variables

the average power P(T) for a deterministic signal x(t)

-
P(T)= 21T/+T X2 (1) dt

the average power Pxx for a random process X(t)

P li ! +TE><2 d
xx = lim o= | _ [X?(t)] dt

= AE X))
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Average Power P(T)
N Gaussian random variables

P(T) = 21T/+TTx2(t)dt

@ not the average power in a random process
o only the power in one sample function
@ not the average power in an entire sample function
e take T —  to include all power in the ensemble member

@ to obtain the average power over all possible realizations,
o replace x(t) by X(t)
o take the expected value of x?(1), that is E [X?(1)]

@ then, the average power is a random variable
with respect to the random process X(t)
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Average Power Pxx
N Gaussian random variables

P(T) = 21T/_+TTX2(t)dt

@ replace x(t) by the random variable X(t)
o take the expected value of x?(1), that is E [X?(¢)]

P(T) = — +TEX2 d
(M) =57 [ ED()] de
@ take T — oo to include all power

_ _ 1 T )
Psox = Jim P(T) = lim > | E[X?(1)] dt
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Fourier Transform of x7(t)

N Gaussian random variables

for a finite T, x7(t) is assumed to have bounded variation

+T
/ Ix(£)|dt < oo
T

the Fourier transform of x7(t)

X7 ( ):/JFOOXT(t)e_j tdt

—oo

=1 .
:/ x(t)e ™ tdt
-T
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Fourier transform - x7(t) and X7(1)

N Gaussian random variables

a deterministic sample signal x7 (1)
XT(t) <~ XT( )

a random process signal X7(t)

X7 (1) <= Xr(0)
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Parseval's theorem (I)

N Gaussian random variables

a deterministic sample signal x7(t)

/+wxr(r)xfr(r)dfz21ﬂ /_:NXT( )X3(0)do

—o0

+oo 1 e
[ @)= [ ixr(0)Pdo
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Parseval's theorem (II)

N Gaussian random variables

Parseval’s Theorem

@ a deterministic signal x7(t) <= X7 ()

+T 5 1t 5
[ xrPde=- [ 1xr(0)Pdo

e a random signal X7(t) <= Xr(0)

[ Elrof)a= 5 [T elxrorao
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Energy and Average Power in frequency domain

N Gaussian random variables

the average power for a deterministic signal x(t)

E(T):/;sz(t)dt

= — d
[ Xr(0)Pdo

P(T) = %/f:%(t)dt

1 1 [t
= — X 2
2T27r/,w Xr ()l de

_ 1 = X ()P
*%/_N > 99

Parseval's theorem is used
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E(T) and P(T) in frequency domain — deterministic case

N Gaussian random variables

the energy for the deterministic X7 ()
1 [t
E(T)=— Xr(0))
(M= [ IXr(@)Pdo

the average power for the deterministic X7 ()

1 [+ | Xr(0)P?
HU=51 ;)m

the power density spectrum for the deterministic X1 (o)

2
Xr(o)
T —oo 2T
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E(T) and P(T) in frequency domain — random case

N Gaussian random variables

the energy for the random X7 ()

E(T) =5 [ ElXr(e)P]do

—oo

the average power for the random Xt ()

1 /+°°E“XT( )I?]

=2 /). T 92

P(T)

the power density spectrum for the random Xt ()
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Power density spectrum Sxx (o)

N Gaussian random variables

the average power Pxx for the random process X1()

oo E [|X7(o)[?
Pxx = 1/ lim 7[’ () } dw
27 ) oo

the power density spectrum Sxx(®)

SXX( ) _ -,l-lg]wEUX;——f— )‘ ]

Pxx == | [Sx(0) o
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Average Power and Power Spectrum Density

N Gaussian random variables

the average power for the deterministic signal X7 ()

1 [t | Xr(0)?
P(T):E/_ S de

the average power Pxx for the random process X7 ()

dow

- l
o) | Tow 2T

= 5 | [Sx()]do

Pxx

1 /*"" E [ X7 ()]
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Properties of Power Spectrum
N Gaussian random variables

[*] Sxx( )ZO

@ Sxx(—)=Sxx(w) X(t) real

o Sxx(w) real

o 3 J1J Sxx(w)dw = A[E [X3(1)]]

o Six(®) = 02Sxx(®)

o &L [T Sxx(w)e/® dw = A[Rxx(t, t+17)]

° Sxx( ):fj;A[Rxx(t,t-i-T)]e*j dt
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Equations involving Sxx (@)

N Gaussian random variables

the average power related equation

1 [t )
g o Sxx( )dw:A[E [X (t)“

the autocorrelation related equation
1 [t

or | Sxx(©)e do = A[Rxx(t, t 4 7))
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Average power related equation

N Gaussian random variables

the average power related equation
1 [t )
or | Sx(@)do = A[E ()]

e a random process X(t) in time domain

e a random process X7 () in frequency domain
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Average power Pxx in time / frequency domain

N Gaussian random variables

a random process X(t) in time domain

Pyy = | E[X?(1)]
25 'sz/ (@)

=| A[E[X?(1)]]

a random process X7(®) in frequency domain

1+ . E[Xr(0)P]
Pyx = — lim — 2O Ly
XX = on /m oL 2T @

[ [ Tsetpo
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Power Density Spectrum of x7(t)

N Gaussian random variables

the average power for a random process X(t)

E || X 2
(S0l g ST
+oo ;

= Rxx(t)e™ Tdt

the average power Pxx for the random process X7 ()

()= 2X(2)

(1) = (j0)" X (0)
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Power Density Spectrum and Auto-correlation
N Gaussian random variables

SXX( ):.A:NA[Rxx(tt_f ‘[')] e*j “dt

%/LMSXX( )&% dw = A[Rxx (t,t +7)]
for a WSS X(t), A[Rxx(t,t+7)] = Rxx(7)

oo .
Sxox( ):[ Rxx(7)e?“"dt

1 [t o
Rxx(‘():%/_ SXX( )e+j “do
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Power Spectrum and Auto-Correlation Functions
N Gaussian random variables

the power spectrum

+oo .
Sxx( ): Rxx(f)eij Tdt

—o0

the auto-correlation function

1 oo .
Rxx(’f):%/ Sxx( )eﬂ “do
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RMS Bandwidth

N Gaussian random variables

Definition

the standard deviation is
a measure of the spread in a density function.
the analogous quantity for the normalized power spectrum is
a measure of its spread that we call the rms bandwidth
(root-mean-square)

> f+°° 25xx( )dCO

—oo

Wrms - Foo
ffoo Sxx( )d(D
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RMS Bandwidth and Mean Frequency

N Gaussian random variables

the mean frequence @g

J72 0Sxx(w)dw
J72 Sxx(w)dw

@ =
the rms bandwidth

e :4ff§( — @)?Sxx()do
e J72 Sxx(0)dw
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