Truth Table (2A)

Copyright (c) 2011-2013 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Truth Table and minterms (1)

inputs
All possible
combination of inputs

$$
x \bar{y} z=1
$$

$$
\begin{aligned}
& x=1 \\
& \bar{y}=1 \\
& z=1
\end{aligned}-\square\left\{\begin{array}{l}
x=1 \\
y=0 \\
z=1
\end{array}\right.
$$

For the output of an and gate to be 1, all inputs must be 1

Truth Table and minterms (2)

Truth Table and MAXterms (1)

For the output of an or gate to be 0 , all inputs must be 0

Truth Table and MAXterms (2)

Maxterm and minterm Conditions

Boolean Function with minterms (1)

Boolean Function with minterms (2)

For the output of an or gate to be 1, at least one must be 1

Boolean Function with Maxterms (1)

index

inputs output

Boolean Function with Maxterms (2)

index
inputs output
All possible
combination of inputs

The output F becomes 0,
either $M_{0}=0$ or $M_{2}=0$ or $M_{5}=0$ or $M_{6}=0$ or $M_{7}=0$

$$
M_{0} \cdot M_{2} \cdot M_{5} \cdot M_{6} \cdot M_{7}=0 \quad \sqcap \quad F=0
$$

$\Leftrightarrow \quad F=M_{0} \cdot M_{2} \cdot M_{5} \cdot M_{6} \cdot M_{7}$

The output F becomes 1,
either $M_{1}=0$ or $M_{3}=0$ or $M_{4}=0$

$$
M_{1} \cdot M_{3} \cdot M_{4}=0 \quad \sqcap \quad F=1
$$

$\Leftrightarrow \bar{F}=M_{1} \cdot M_{3} \cdot M_{4}$

For the output of an and gate to be 0 , at least one input must be 0

Complimentary Relations

	x			y
z	z			
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	0
7	1	1	1	0

inputs output

All possible

combination of inputs

$$
\begin{aligned}
& m_{i}=\bar{M}_{i} \\
& M_{i}=\overline{m_{i}}
\end{aligned}
$$

$$
F(x, y, z)=m_{1}+m_{3}+m_{4}
$$

The output F becomes 1 ,
either $m_{1}=1$ or $m_{3}=1$ or $m_{4}=1$
For the output of an or gate to be 1, at least one must be 1

$$
\begin{aligned}
\bar{F}(x, y, z) & =m_{0}+m_{2}+m_{5}+m_{6}+m_{7} \\
\Leftrightarrow F(x, y, z) & =\overline{m_{0}+m_{2}+m_{5}+m_{6}+m_{7}} \\
& =\overline{m_{0}} \cdot \overline{m_{2}} \cdot \overline{m_{5}} \cdot \overline{m_{6}} \cdot \overline{m_{7}}
\end{aligned}
$$

$$
F(x, y, z)=M_{0} \cdot M_{2} \cdot M_{5} \cdot M_{6} \cdot M_{7}
$$

The output F becomes 0,
either $M_{0}=0$ or $M_{2}=0$ or $M_{5}=0$ or $M_{6}=0$ or $M_{7}=0$
For the output of an and gate to be 0, at least one input must be 0

Boolean Function Summary

	x			
	y	z	F	
	0	0	0	
1	0	0	1	1
2	0	1	0	
3	0	1	1	1
4	1	0	0	1
5	1	0	1	
6	1	1	0	
7	1	1	1	

	x			
0	y	z	F	
	0	0	0	0
1	0	0	1	
2	0	1	0	0
3	0	1	1	
4	1	0	0	
5	1	0	1	0
6	1	1	0	0
7	1	1	1	0

The output F becomes 1,
for the cases

1) when $m_{1}=1$ or $m_{3}=1$ or $m_{4}=1$
$F(x, y, z)=m_{1}+m_{3}+m_{4} \quad F=1$
2) when $M_{1}=0$ or $M_{3}=0$ or $M_{4}=0$
$\bar{F}(x, y, z)=M_{1} \cdot M_{3} \cdot M_{4}$
$\Rightarrow \quad F=1(\bar{F}=0)$

The output F becomes 0,

for the cases

1) when $m_{0}=1$ or $m_{2}=1$ or $m_{5}=1$ or $m_{6}=1$ or $m_{7}=1$

Boolean Function Summary

	x					y	z	F
	0	0	0	0				
1	0	0	1	1				
2	0	1	0	0				
3	0	1	1	1				
4	1	0	0	1				
5	1	0	1	0				
6	1	1	0	0				
7	1	1	1	0				

$$
\begin{array}{ll}
F(x, y, z)=m_{1}+m_{3}+m_{4} \\
F(x, y, z)=M_{0} \cdot M_{2} \cdot M_{5} \cdot M_{6} \cdot M_{7} & \Rightarrow F=1 \\
F=0
\end{array}
$$

$$
\begin{array}{ll}
\bar{F}(x, y, z)=m_{0}+m_{2}+m_{5}+m_{6}+m_{7} & F=0(\bar{F}=1) \\
\bar{F}(x, y, z)=M_{1} \cdot M_{3} \cdot M_{4} & \Rightarrow=1(\bar{F}=0)
\end{array}
$$

Truth Table

References

[1] http://en.wikipedia.org/

