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PL: A Model  

A model or a possible world:

Every atomic proposition is assigned a value T or F

The set of all these assignments constitutes 
A model or a possible world

All possible worlds (assignments) are permissiable

A B A∧B A∧B ⇒ A

T T    T T
T F    F T
F T    F T
F F    F  T

T  T

T  F

F  T

F  F

T  T
T  F

T  T
T  F
F  T

T  T
T  F
F  T
F  F

Every atomic proposition : A, B

models
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PL: Interpretation

An interpretation of a formal system is 

the assignment of meanings to the symbols, 

and truth values to the sentences of a formal system. 

The study of interpretations is called formal semantics

Giving an interpretation is synonymous with 

constructing a model. 

An interpretation is expressed in a metalanguage, 

which may itself be a formal language, 

and as such itself is a syntactic entity.

https://en.wikipedia.org/wiki/Syntax_(logic)#Syntactic_consequence_within_a_formal_system
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PL: Material Implication vs Logical implication  

Given two propositions A and B,
If A ⇒ B is a tautology
It is said that A logically implies B (A ⇛ B)

Material Implication A ⇒ B (not a tautology)
Logical Implication A ⇛ B (a tautology)

A B A⇒B 
T T    T
T F    F
F T    T
F F    T 

A B A∧B A∧B ⇒ A

T T    T T
T F    F T
F T    F T
F F    F  T

A∧B ⇛ A

tautology
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PL: Entailment

A B A⇒B 
T T    T
T F    F
F T    T
F F    T 

A B A∧B A∧B ⇒ A

T T    T T
T F    F T
F T    F T
F F    F  T

any model that makes A∧B true 

also makes A true     A∧B  A⊨

No case : True ⇒ False 

Entailment A∧B  A⊨ , or A∧B ⇛ A

if A→B holds in every model then A  B⊨ , 
and conversely if A  B⊨  then A→B is true in every model
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PL: Validity and Soundness (1)

An argument form is valid if and only if 

whenever the premises are all true, then conclusion is true. 

An argument is valid if its argument form is valid.

An argument is sound if and only if 

it is valid and all its premises are true.

http://math.stackexchange.com/questions/281208/what-is-the-difference-between-a-sound-argument-and-a-valid-argument

premises : true conclusion : trueIf then

premises : true conclusion : trueAlways therefore

false true

false false

true falseIf then never
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PL: Validity and Soundness (2)

A deductive argument is said to be valid if and only if 

it takes a form that makes it impossible 
for the premises to be true and the conclusion nevertheless to be false. 

Otherwise, a deductive argument is said to be invalid.
for the premises to be true and the conclusion is false. 

A deductive argument is sound if and only if 

it is both valid, and all of its premises are actually true. 

Otherwise, a deductive argument is unsound.

http://www.iep.utm.edu/val-snd/

true falseIf then never

premises : true conclusion : trueAlways therefore
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PL: Validity and Soundness (3)

http://www.iep.utm.edu/val-snd/

A B A⇒B A∧(A⇒B) A∧(A⇒B)⇒B

T T    T T T
T F    F F T
F T    T F T
F F    T  F T

sound

valid

A B A⇒B A∧(A⇒B) A∧(A⇒B)⇒B

T T    T T T
T F    F F T
F T    T F T
F F    T  F T

If premises : true then never conclusion : false

Always premises : true therefore  conclusion : true
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Formulas and Sentences

An formula 
● A atomic formula
● The operator ¬ followed by a formula
● Two formulas separated by ∧, ∨, ⇒, ⇔
● A quantifier following by a variable followed by a formula

A sentence
● A formula with no free variables

∀x love(x,y) : free variable y : not a sentence
∀x tall(x) : no free variable  : a sentence
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Interpretation

an interpretation

(a) an entity in D is assigned to each of the constant symbols.
Normally, every entity is assigned to a constant symbol.

(b) for each function, 
an entity is assigned to each possible input of entities to the function

(c) the predicate ‘True’ is always assigned the value T
The predicate ‘False’ is always assigned the value F

(d) for every other predicate, 
the value T or F is assigned 
to each possible input of entities to the predicate 
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Satisfiability of a sentence

If a sentence s evaluates to True under a given interpretation I

I satisfies s; I  ⊨ s

A sentence is satisfiable 
if there is some interpretation under which it is true.
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Satisfiability of a formula

A formula that contains free variables is satisfied by an interpretation 

if the formula has value T regardless of which individuals 
from the domain of discourse are assigned to its free variables

more complicated, because an interpretation on its own 
does not determine the truth value of such a formula. 

The most common convention is that 
a formula with free variables is said to be satisfied by an interpretation 

if the formula remains true regardless which individuals 
from the domain of discourse are assigned to its free variables. 

a formula is satisfied if and only if its universal closure is satisfied.
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Validity of a formula

A formula is logically valid (or simply valid) 
if it is valid in every interpretation. 

These formulas play a role similar to 
tautologies in propositional logic.
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Logical implication of a formula

A formula B is a logical consequence of a formula A 
if every interpretation that makes A true also makes B true. 

In this case one says that B is logically implied by A.

Given tow formulas A and B, if A ⇒ B is valid:

A logically implies B   A ⇛ B 
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Valid 

A formula is valid 
if it is satisfied by every interpretation

Every tautology is a valid formula 

A valid sentence: human(John)  ¬∨ human(John)

A valid sentence: x∃  (human(x)  ¬∨ human(x)

A valid formula: loves(John, y)  ¬∨ loves(John, y)
True  regardless of which individual 
in the domain of discourse is assigned to y
This formula is true in every interpretation
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Contradiction

A sentence is a contradiction if there is no interpretation that satisfies it

∃x (human(x)  ¬∧ human(x)

not satisfiable under any interpretation
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Logical Implication

Given tow formulas A and B, if A ⇒ B is valid:

A logically implies B   A ⇛ B 

human(John)  ∧ ( human(John) ⇒ mortal(John) )  ⇛  mortal(John)

valid if it is satisfied by every interpretation
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Logical Equivalence

Given tow formulas A and B, if A ⇔ B is valid:

A is logically equivalent B   A ≡ B 

( human(John) ⇒ mortal(John) ) ≡  ( ¬ human(John)  ∨ mortal(John) )

valid if it is satisfied by every interpretation
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Some Logical Equivalences

A and B are variables representing arbitrary predicates
A and B could have other arguments besides x

¬ x∃  A(x) ≡ x∀  ¬A(x)

¬ x∀  A(x) ≡ x∃  ¬A(x)

∃x (A(x) ∨ B(x)) ≡ x∃  A(x) ∨ x∃  B(x)

∀x (A(x) ∧ B(x)) ≡ x∀  A(x) ∧ x∀  B(x)

∀x A(x) ≡ y∀  A(y)

∃x A(x) ≡ y∃  A(y)
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