Propositional Logic–Arguments (5A)

Young W. Lim 9/27/16 Copyright (c) 2016 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice

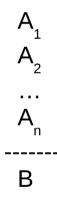
Contemporary Artificial Intelligence, R.E. Neapolitan & X. Jiang

Logic and Its Applications, Burkey & Foxley

Arguments

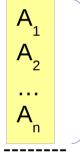
An **argument** consists of a set of propositions : The **premises** propositions The **conclusion** proposition

List of premises followed by the conclusion



The premises is said to <u>entail</u> the conclusion If in <u>every model</u> in which all the premises are true, the conclusion is also true

List of premises followed by the conclusion



whenever all the premises are true

В

the **conclusion** must be **true** *for the entailment*

A Model

A mode or possible world:

Every atomic proposition is assigned a value T or F

The set of all these assignments constitutes A model or a possible world

All possile worlds (assignments) are permissiable

Entailment Notation

Suppose we have <u>an argument</u> whose premises are A₁, A₂, ..., A_n whose conclusion is B

Then

 $A_{1}, A_{2}, \dots, A_{n} \models B \quad \text{if and only if} \\ A_{1} \land A_{2} \land \dots \land A_{n} \Rightarrow B \quad \text{(logical implication)}$

logical implication:

if
$$A_1 \land A_2 \land \dots \land A_n \Rightarrow B$$
 is tautology (always true)

The premises is said to <u>entail</u> the conclusion If <u>in every model</u> in which all the premises are true, the conclusion is also true

Entailment and Logical Implication

 $A_1, A_2, \dots, A_n \models B$

$$\iff A_1 \land A_2 \land \dots \land A_n \Longrightarrow B$$

 $\implies A_1 \land A_2 \land \dots \land A_n \Rightarrow B \text{ is a tautology}$

(logical implication)

If all the premises are **true**, then the **conclusion** must be **true**

 $T \land T \land \dots \land T \Rightarrow T$ $T \land T \land \dots \land T \Rightarrow \not \not \in$ $F \land X \land \dots \land X \Rightarrow X$

A sound argument

 $A_1, A_2, \dots, A_n \models B$

If the premises entails the conclusion

A fallacy

 $A_1, A_2, \dots, A_n \not\models B$

If the **premises** does **<u>not</u> <u>entail</u> the <u>conclusion</u>**

Entailment Examples

A,
$$(A \Rightarrow B) \models B$$

A, $(A \Rightarrow B) \Rightarrow B$
A $\land (A \Rightarrow B) \Rightarrow B$

Entailment Examples and Truth Tables

А	В	A∧B	A∧B⇒A
Т	Т	Т	Т
T	F	F	Т
F	Т	F	Т
F	F	F	Т

The premises is said to <u>entail</u> the conclusion If <u>in every model</u> in which all the premises are true, the conclusion is also true

> any of the premises are false, still premises ⇒ conclusion is true (F⇒T and F⇒F always T)

 $A \Lambda B \Rightarrow A$

Tautology

А	В	A⇒B	A∧(A⇒B)	A∧(A⇒B)⇒B
Т	Т	Т	т	т
Т	F	F	F	Т
F	Т	Т	F	Т
F	F	Т	F	т

 $A \land (A \Rightarrow B) \Rightarrow B$

Propositional logic

Given propositions (statements) : T or F <u>Deductive inference</u> of T or F of *other propositions*

Deductive Inference

A process by which the truth of the conclusion is shown to necessarily follow from the truth of the premises

Deduction System

Deduction System : a set of inference rules

Inference rules are used to reason deductively

Sound Deduction System :

if it derives only sound arguments

Each of the inference rules is sound

Complete Deduction System : It can drive every sound argument

Must contain deduction theorem rule

Inference Rules

A, B ⊨ A ∧B		
A A B ⊨ A		
A⊨Av B		
$A, A \Rightarrow B \models B$		
$\neg B, A \Rightarrow B \models \neg A$		
$A \Rightarrow B, B \Rightarrow C \models A \Rightarrow C$		
A v B, ¬A ⊨ B		
$A \Rightarrow B, \neg A \Rightarrow B \models B$		
$A \Leftrightarrow B \models A \Rightarrow B$		
$A \Rightarrow B, B \Rightarrow A \models A \Leftrightarrow B$		
A, ¬A ⊨ B		
ΑΛΒ ⊨ ΒΛΑ		
A v B ⊨ B v A		
If $A_1, A_2, \dots, A_n, B \models C$ then $A_1, A_2, \dots, A_n, \models B \Rightarrow C$		

Deduction Theorem

$$A_{1}, A_{2}, \dots, A_{n}, B \models C$$

$$A_{1}, A_{2}, \dots, A_{n}, \models B \Rightarrow C$$

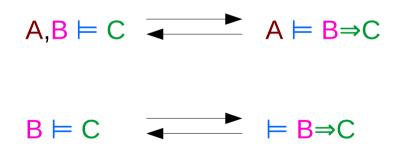
$$A_{1} \land A_{2} \land \dots \land A_{n} \land B \models C$$

$$A_{1} \land A_{2} \land \dots \land A_{n} \land B \models C$$

$$A_{1} \land A_{2} \land \dots \land A_{n} \models B \Rightarrow C$$

The premises is said to <u>entail</u> the conclusion If <u>in every model</u> in which all the premises are true, the conclusion is also true

 $\begin{array}{l} A_{1}, A_{2}, \dots, A_{n} \vDash B \text{ if and only if} \\ A_{1} \land A_{2} \land \dots \land A_{n} \Rightarrow B \\ (A_{1} \land A_{2} \land \dots \land A_{n} \Rightarrow B \text{ is a tautology}) \end{array}$



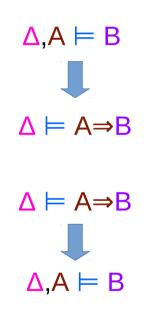
If A is T, then $B \Rightarrow C$ is always T (for the tautology) Even if A,B is T, then $B \Rightarrow C$ is always T And if A,B is T, then B is T By modus ponens in the RHS, A,B is T, then C is true

$\Delta, A \models B$ iff $\Delta \models A \Rightarrow B$

where Δ : a set of formulas,

if the formula B is deducible from a set Δ of assumptions, together with the assumption A, then the formula $A \Rightarrow B$ is deducible from Δ alone.

Conversely, if we can deduce $A \Rightarrow B$ from Δ , and if in addition we assume A, then B can be deduced.



http://planetmath.org/deductiontheorem

The deduction theorem conforms with our intuitive understanding of how mathematical proofs work:

if we want to prove the statement "A implies B", then by assuming A, if we can prove B, we have established "A implies B".

http://planetmath.org/deductiontheorem

The converse statement of the deduction theorem turns out to be a trivial consequence of **modus ponens**: $A, A \Rightarrow B \models B$

if $\Delta \models A \Rightarrow B$, then certainly $\Delta, A \models A \Rightarrow B$ Since $\Delta, A \models A$, we get, via **modus ponens**, $\Delta, A \models B$ as a result.

 $\Delta, A \models A \Rightarrow B$ $\Delta, A \models A$ $\Delta, A \models B$

http://planetmath.org/deductiontheorem

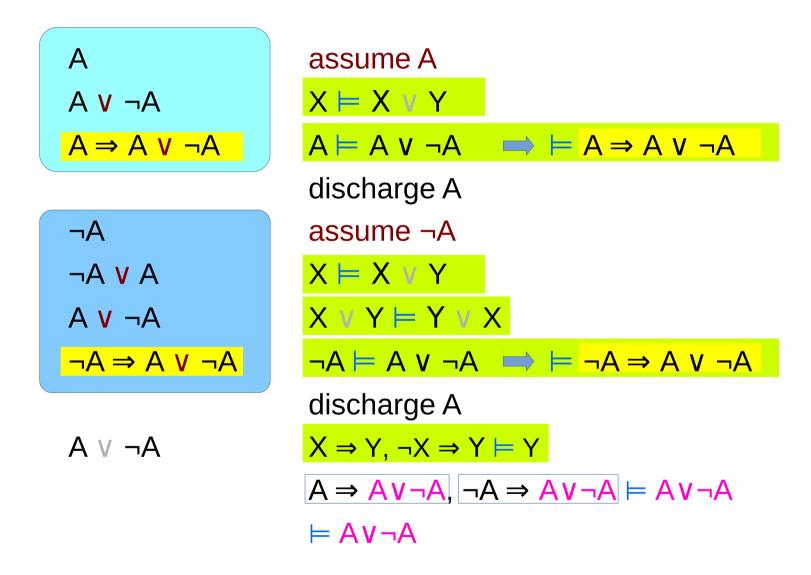
Deduction theorem is needed to derive arguments that has no premises

An argument without premises is simply a tautology

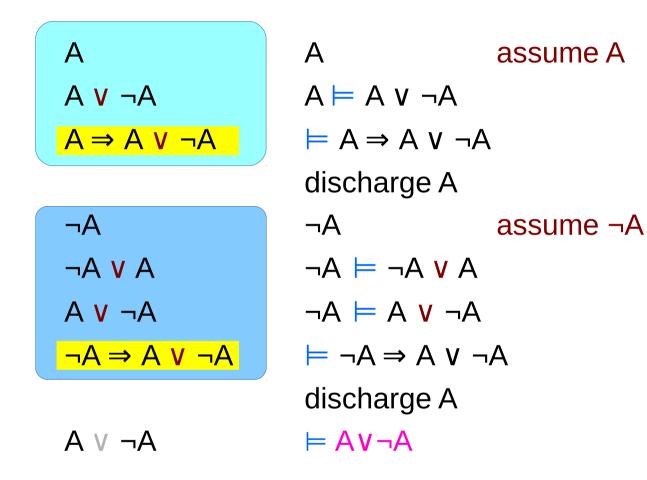
⊨Av¬A

no premises appear before the ⊨ symbol an argument without premises Tautology if it is sound

Argument without premises



Argument without premises



Prove using truth tables Whether an argument is sound or fallacy

time complexity (2ⁿ)
 not the way which humans do

Prove using inference rules To reason deductively **1. semantic consequence**: with a set of sentences on the left and a single sentence on the right, to denote that if every sentence on the left is true, the sentence on the right must be true, e.g. $\Gamma \models \varphi$. This usage is closely related to the single-barred turnstile symbol which denotes syntactic consequence.

2. satisfaction: with a model (or truth-structure) on the left and a set of sentences on the right, to denote that the structure is a model for (or satisfies) the set of sentences, e.g. $A \models \Gamma$.

3. a tautology: $\models \phi$. which is to say that the expression ϕ is a semantic consequence of the empty set.

https://en.wikipedia.org/wiki/Double_turnstile

A formula **A** is a syntactic consequence within some formal system **FS** of a set Γ of formulas if there is a formal proof in **FS** of **A** from the set Γ .

$\mathbf{\Gamma} \vdash_{\scriptscriptstyle \mathsf{FS}} \mathbf{A}$

Syntactic consequence does not depend on any interpretation of the formal system.

A formal proof or derivation is a finite sequence of sentences (called well-formed formulas in the case of a formal language), each of which is an axiom, an assumption, or follows from the preceding sentences in the sequence by a **rule of inference**. The last sentence in the sequence is a **theorem** of a formal system.

https://en.wikipedia.org/wiki/Double_turnstile

A formula A is a semantic consequence within some formal system FS of a set of statements Γ

 $\Gamma \models_{FS} A$

if and only if there is no model I in which all members of Γ are true and A is false. Or, in other words, the set of the interpretations that make all members of Γ true is a **subset** of the set of the interpretations that make A true.

https://en.wikipedia.org/wiki/Double_turnstile

$\mathsf{A}\vdash_{\mathsf{s}}\mathsf{B}$

means there is a derivation, in the proof-system S, from the premise A to the conclusion B. [If context fixes the relevant system S, we suppress the subscript.]

A⊨_B

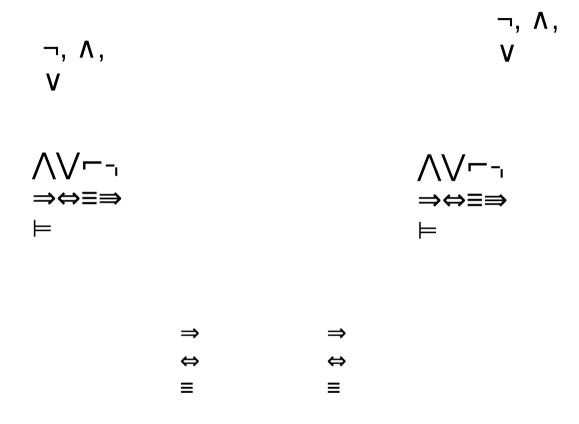
means that on every possible interpretation of the non-logical vocabulary of language L, if A comes out true, so does B. [If context fixes the relevant language L we suppress the subscript.]

$A \mathop{\rightarrow} B$

on the truth-functional interpretation, if the atomic wff p happens to be false and the atomic wff q happens to the false too, then $p \rightarrow q$ evaluates as true. But of course we don't have $p \models q$ (q isn't true on every valuation which makes p true).

http://math.stackexchange.com/questions/365569/whats-the-difference-between-syntactic-consequence-%E2%8A%A2-and-semantic-consequence-%E2%8A%A8

Logical Equivalences



References

- [1] en.wikipedia.org
- [2] en.wiktionary.org
- [3] U. Endriss, "Lecture Notes : Introduction to Prolog Programming"
- [4] http://www.learnprolognow.org/ Learn Prolog Now!
- [5] http://www.csupomona.edu/~jrfisher/www/prolog_tutorial
- [6] www.cse.unsw.edu.au/~billw/cs9414/notes/prolog/intro.html
- [7] www.cse.unsw.edu.au/~billw/dictionaries/prolog/negation.html
- [8] http://ilppp.cs.lth.se/, P. Nugues,`An Intro to Lang Processing with Perl and Prolog