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Concepts of Sets

An open set S   

Every point of S has a neighborhood 
consisting entirely of points that belong to S

{ points in the interior of a circle }

A boundary point set S   

A point every neighborhood of which contains
both points that belong to S 
and points that do not belong to S

The boundary of a set S   

The set of all boundary points of a set S

An closed set    

If its complement set is open
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Neighborhood

A circle of radius    and center 

Open circular disk

ρ a

∣z − a∣ = ρ

∣z − a∣ < ρ

Closed circular disk

∣z − a∣ ≤ ρ

A neighborhood of a

ρ−neighborhood of a

Open annulus

ρ1 < ∣z − a∣ < ρ2
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Domain and Region

A connected set S   

Any two of its points can be joined by a broken line
of finitely many straight-line segments 
all of whose points belong to S 

An open connected set S   :  a domain

An open connected set S  +

 some or all of its boundary points :  a region

+ =



Complex Function (1A) 6 Young Won Lim
2/22/14

Derivatives 

Derivative of      at  

is said to be differentiable at 

can approach zero 
from any convenient direction z0

the complex function    is defined in a neighborhood of a point f z0

f z0 f '(z0) = lim
Δz→0

f (z0 + Δ z) − f (z0)

Δ z

If the limit exists
f z0

Δ z

f '(z) =
d f
d z

= lim
Δz→0

Δ f
Δ z

Derivative (function) of f

complex differentiable A neighborhood property
“holomorphic”

a unique derivative 
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Analytic Functions

differentiable  at and  a complex function     is 
analytic at a point 

f
z0

f z0
differentiable  at every point 
in some neighborhood of   

f
z0

analytic at every point a complex function     is 
analytic in a domain 

f
D

f z0
in the domain D

analytic at every point a complex function     is 
an entire function 

f f z0
in the entire complex plane 

polynomial functions

a neighborhood propertyholomorphic
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Analytic Functions – a neighborhood property

a complex function     is 
analytic at a point 

f
z0

a complex function     is 
analytic in a domain 

f
D

a complex function     is 
an entire function 

f

always can find some 
neighborhood where the 
function is complex 
differentiable at each  point

z0

D

the whole 
complex 
plane
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Analytic Function Examples

A complex function can be 
differentiable at a point 
but differentiable nowhere else

z0

f (z ) =∣z∣2 = z z̄ = x2+ y2

f '(z ) = lim
Δ z→0

(x+ Δ x)
2
+ (y+ Δ y)

2
− x2 − y2

Δ x + iΔ y

f (z ) = z2

not an analytic function

f '(0) = lim
Δ z→ 0

(Δ x)
2
+ (Δ y)

2

Δ x + iΔ y
= 0

lim
Δ x→ 0

(x+ Δ x)
2
− x2

Δ x
(Δ y = 0)

lim
Δ y→ 0

(y+ Δ y )
2
− y 2

iΔ y
(Δ x = 0)differentiable at zero but 

differentiable nowhere else

differentiable everywhere in 
the complex plane

analytic

analytic everywhere entire function
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Extending Complex Analytic Functions 

If a complex analytic function is defined in an open ball around a 
point x

0
, its power series expansion at x

0
 is convergent in the whole 

ball 
(analyticity of holomorphic functions). 

The corresponding statement for real analytic functions (with open 
interval of the real line) is not true in general; 

an example for x
0
 = 1 and a ball of radius exceeding 1, since the 

power series f(x) =1 − x2 + x4 − x6... diverges for |x| > 1.

a complex analytic 
function

a real      analytic 
function

extend
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The Radius of Convergence  ≤ 1

f (x) = 1 − x2
+ x4

− x6
+ ⋯+ (−1)

n x2n
+ ⋯

f (z) = 1− z2
+ z4

− z6 + ⋯+ (−1)
n z2n + ⋯

Differentiable everywhere in the 
real line

Differentiable everywhere in the 
complex plane

f (x)
1

1 + x2 ∣x∣< 1 Differentiable at 0 and at every 
point in an open set (-1, +1) 

f (z)
1

1 + z2 Differentiable at 0 and at every 
point in an open set  a ball of radius 
≤ 1

Converge when

Converge when

Not differentiable at +i, –i

∣z∣< 1

 Differentiable everywhere

entire function 

rational function 

∣z∣< R , R ≤ 1
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The Radius of Convergence > 1

∣z∣< 1 ℜ

ℑ

f (x) = 1 − x2
+ x4

− x6
+ ⋯+ (−1)

n x2n
+ ⋯

f (z) = 1− z2
+ z4

− z6 + ⋯+ (−1)
n z2n + ⋯

1
1 + z2

converges  tof (z) for

∣x∣< 1
1

1 + x2converges  tof (x) for

∣z−1∣< √2

ℜ

ℑ
f (z) = ∑

n=0

∞

ai(z−1)i

∣z−1∣< √2
1

1 + z2
converges  tof (z) for

The distance from the center to the  
nearest isolated singularity

the radius of convergence 

No corresponding case for 
real analytic function

real

complex

complex
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Extending Real Analytic Functions

Any real analytic function on some open set on the real line can be extended 
to a complex analytic function on some open set of the complex plane. 

However, not every real analytic function defined on the whole real line can 
be extended to a complex analytic defined on the whole complex plane.

f(x) =1 − x2 + x4 − x.. is a counterexample, 
as it is not defined for x = ±i. 

a complex analytic 
function

a real      analytic 
function

extend



Complex Function (1A) 14 Young Won Lim
2/22/14

Examples of Complex Analytic Functions

∣ 1
1 + z2∣ ∣1− z2

+ z4
− z6 + z8 − z10 + z12

− z14∣

arg( 1
1 + z2 )

arg( 1− z2 + z4
− z6

+ z8
− z10 + z12 − z14

)
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Analyticity and Differentiability

`

Any real analytic function Infinitely differentiable

Smooth 

There exist a non-analytic smooth function 

Any complex analytic function Infinitely differentiable

Smooth 

Any complex analytic function Any differentiable function
in an open set 

Any complex analytic function Any complex holomorphic function
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Other Definitions of Analyticity 

A function f(z) is analytic (or regular or holomorphic or monogenic) in a region 
if it has a (unique) derivative at every point of the region. 

The statement f(z) is analytic at a point z=z
0
 means 

that f(z) has a derivative at every point inside some small circle about z=z
0
.

Isolated points and curves are not regions; a region must be two dimensional
M. L. Boas, “Mathematical methods in the physical sciences”

A function f(z) is said to be analytic in a domain D 
if f(z) is defined and differentiable at all points of D.

The function f(z) is said to be analytic at a point z=z0 in D 
if f(z) is analytic in a neighborhood of z0.

Also, by an analytic function we mean a function that is analytic in some domain
E. Kreyszig, “Advanced Engineering Mathematics”
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General Definitions of Analyticity 

A function that is locally given by a convergent power series. 

A function is analytic if and only if its Taylor series about x
0
 

converges to the function in some neighborhood for every x
0
 

in its domain.

real analytic functions  infinitely differentiable

complex analytic functions  infinitely differentiable

Complex analytic functions exhibit properties that do not hold generally for 
real analytic functions. 

`
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Complex Analytic Functions

: analytic 
  in a region

f '(z ) =
d f
d z

= lim
Δ z→0

Δ f
Δ z

Δ f = f (z+Δ z) − f (z )

f (z)

Δ z = Δ x + iΔ y

f (z) has a (unique) derivative 
at every point of the region

: analytic 
  at a point

f (z)
z = a

f (z) has a (unique) derivative 
at every point of some small 
circle about z = a

complex differentiable
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Singular Point

Regular point of f (z) a point at which 
is analytic

Singular point of a point at which 
is not analytic

Isolated Singular point of a point at which 
is analytic 

everywhere else
inside some small circle
about the singular point

f (z)

f (z)

f (z)

f (z)

f (z)

ℜ

ℑ
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Isolated Singularity

There exists some deleted 
neighborhood or punctured 
open disk of z0 throughout 
which f(z) is analytic

0 < ∣z−z0∣ < R

If z=z0 has a neighborhood 
without further singularities of 
f(z)

Isolated Singularity of   
z=z0

f (z)

tan (z) ±π/2, ±3π/2, ⋯

tan (1/z) 0

Isolated Singularity 

Non-isolated Singularity 
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Non-isolated Singularity

Cluster points: limit points of isolated 
singularities. If they are all poles, despite 
admitting Laurent series expansions on 
each of them, no such expansion is 
possible at its limit

f (z) = tan(1/z)

Natural boundaries: non-isolated set 
(e.g. a curve) which functions can not be 
analytically continued around (or outside 
them if they are closed curves in the 
Riemann sphere).

simple poles zn =
1

(π/2 + nπ )

lim
n→0

zn = 0

Every punctured disk centered at 0 
has an infinite number of 
singularities. No Laurent expansion

f (z) = Ln z

the branch point  0

Every neighborhood of z0 contains at 
least one singularity of f(z) other than 
z0

and the negative axis 
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Being analytic means (1)

: differentiable at a point

f (z) = u(x , y ) + iv (x , y ) ∂u
∂x

= +
∂v
∂ y

∂v
∂x

= −
∂u
∂ y

f (z) = u(x , y ) + iv (x , y )

∂

∂x
∂

∂ y

f (z) = u(x , y ) + iv (x , y )

∂

∂x
∂

∂ y

Necessary condition 
for analyticity

z = x + i y

can approach zero 
from any convenient direction z0

Δ z

a unique derivative 
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Being analytic means (2)

existsf '(z)

: differentiable at a pointf (z) = u(x , y ) + iv (x , y ) z = x + i y

Δ z = Δ x + iΔ yf '(z ) = lim
Δ z→0

f (z0 + Δ z) − f (z0)

Δ z

= lim
Δ z→0

u (x+Δ x , y+Δ y )+i v(x+Δ x , y+Δ y)−u(x , y)−iv(x , y )

Δ z

horizontal approach

Δ z → 0
Δ x → 0

z0
Δ y = 0

vertical approach

Δ z → 0
Δ y → 0
Δ x = 0

f '(z)

must have 
the same
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Δ y = 0

Δ x = 0

Being analytic means (3)

horizontal approach Δ z → 0 Δ x → 0

z0

= lim
Δ z→0

u (x+Δ x , y)−u(x , y)

Δx
+ i

v (x+Δ x , y)−v(x ,y )

Δ x

=
∂u
∂ x

+ i ∂v
∂x

vertical approach Δ z → 0 Δ y → 0

f '(z ) = lim
Δ z→0

u (x+Δ x , y+Δ y )+i v(x+Δx , y+Δ y)−u(x , y)−iv(x , y)

Δ z

= lim
Δ z→0

u (x ,y+Δ y)−u(x , y)

iΔ y
+ i

v(x , y+Δ y )−v(x , y)

iΔ y

= −i ∂u
∂ y

+
∂v
∂ y

f '(z ) = lim
Δ z→0

u (x+Δ x , y+Δ y )+i v(x+Δx , y+Δ y)−u(x , y)−iv(x , y)

Δ z z0

=
∂ f
∂x

= −i ∂ f
∂ y
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Δ y = 0

Δ x = 0

Being analytic means (4)

f '(z ) =
∂u
∂x

+ i ∂v
∂x

= −i ∂u
∂ y

+
∂v
∂y

∂u
∂ x

=
∂v
∂ y

∂v
∂ x

= −
∂u
∂ y

horizontal approach Δ z → 0 Δ x → 0

vertical approach Δ z → 0 Δ y → 0

z0

z0

f '(z ) =
∂u
∂x

+ i ∂v
∂x

=
∂ f
∂x

f '(z ) = −i ∂u
∂ y

+
∂v
∂ y

= −i ∂ f
∂ y

Cauchy-Riemann equations
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Being analytic means (5)

f (z ) = u(x , y ) + i v (x , y ) : analytic in a region R

Taylor series expansion about any point      inside the region

derivatives of all orders at points inside region

f '(z0) , f ' '(z0) , f (3)
(z0) , f (4)

(z0) , f (5)
(z0), ⋯

z0

The power series converges inside 
the circle about z0

This circle extends to the nearest singular point

z0

Infinitely differentiable

Smooth 

A function that is locally given by a convergent power series. 
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Being analytic means (6)

satisfy Laplace's equation in the region

harmonic functions

satisfy Laplace's equation in 
simply connected region

real and imaginary part of
an analytic function f (z)

f (z ) = u(x , y ) + i v (x , y ) : analytic in a region R

∂
2u

∂ x2 +
∂
2u

∂ y2 = 0

∂
2u

∂ x2 +
∂
2u

∂ y2 = 0

u(x , y ) , v (x , y )
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The necessary and sufficient conditions

: analytic in a domain Df (z) = u(x , y ) + iv (x , y )

∂u
∂x

=
∂v
∂ y

∂v
∂x

= −
∂u
∂ y

: analytic in a domain Df (z) = u(x , y ) + iv (x , y )

∂u
∂x

=
∂v
∂ y

∂v
∂x

= −
∂u
∂ y

u(x , y) , v (x , y )

∂u
∂x

, ∂u
∂ y

, ∂v
∂x

, ∂v
∂ y

: continuous on in a domain D

: continuous on in a domain D
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To Be Analytic (1)

if the real functions u(x,y) and v(x,y) are continuous 

and have continuous first order partial derivatives 

in a neighborhood of z, 

and if u(x,y) and v(x,y) satisfy 

the Cauchy-Riemann equations at the point z,

then the complex function f(z) = u(x,y) + iv(x,y) 

is differentiable at z 

and f'(z) is as belows.

f '(z ) =
∂u
∂ x

+ i ∂v
∂x

=
∂v
∂ y

− i ∂u
∂ y

z0
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