Complex Functions (1A)

Copyright (c) 2011-2014 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Concepts of Sets

An open set S
Every point of S has a neighborhood consisting entirely of points that belong to S
\{ points in the interior of a circle \}

A boundary point set S

A point every neighborhood of which contains both points that belong to S and points that do not belong to S

The boundary of a set S
The set of all boundary points of a set S

An closed set
If its complement set is open

Neighborhood

A circle of radius ρ and center a

$$
|z-a|=\rho
$$

Open circular disk

$$
|z-a|<\rho
$$

A neighborhood of a
ρ-neighborhood of a

Closed circular disk

$$
|z-a| \leq \rho
$$

Open annulus

$$
\rho_{1}<|z-a|<\rho_{2}
$$

Domain and Region

A connected set S
Any two of its points can be joined by a broken line of finitely many straight-line segments
all of whose points belong to S

An open connected set S : a domain

An open connected set S +
some or all of its boundary points : a region

Derivatives

the complex function f is defined in a neighborhood of a point z_{0}

$$
\begin{array}{ll}
\text { Derivative (function) of } f & f^{\prime}(z)=\frac{d f}{d z}=\lim _{\Delta z \rightarrow 0} \frac{\Delta f}{\Delta z} \\
\text { Derivative of } f \text { at } z_{0} & f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}
\end{array}
$$

Δz can approach zero
from any convenient direction
If the limit exists
f is said to be differentiable at z_{0}

a unique derivative
complex differentiable
\longrightarrow A neighborhood property "holomorphic"

Analytic Functions

Analytic Functions - a neighborhood property

a complex function f is analytic at a point z_{0}
a complex function f is analytic in a domain D
a complex function f is an entire function

the whole complex plane

Analytic Function Examples

A complex function can be differentiable at a point $\quad z_{0}$ but differentiable nowhere else

$$
f(z)=|z|^{2}=z \bar{z}=x^{2}+y^{2}
$$

$$
f^{\prime}(z)=\lim _{\Delta z \rightarrow 0} \frac{(x+\Delta x)^{2}+(y+\Delta y)^{2}-x^{2}-y^{2}}{\Delta x+i \Delta y}
$$

differentiable at zero but differentiable nowhere else

$$
f(z)=z^{2}
$$

differentiable everywhere in
the complex plane
analytic everywhere
not an analytic function

$$
\begin{aligned}
& f^{\prime}(0)=\lim _{\Delta z \rightarrow 0} \frac{(\Delta x)^{2}+(\Delta y)^{2}}{\Delta x+i \Delta y}=0 \\
& \left\{\begin{array}{l}
\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{2}-x^{2}}{\Delta x} \quad(\Delta y=0) \\
\lim _{\Delta y \rightarrow 0} \frac{(y+\Delta y)^{2}-y^{2}}{i \Delta y} \quad(\Delta x=0)
\end{array}\right.
\end{aligned}
$$

Extending Complex Analytic Functions

If a complex analytic function is defined in an open ball around a point x_{0}, its power series expansion at x_{0} is convergent in the whole ball (analyticity of holomorphic functions).

The corresponding statement for real analytic functions (with open interval of the real line) is not true in general;
an example for $x_{0}=1$ and a ball of radius exceeding 1 , since the power series $f(x)=1-x^{2}+x^{4}-x^{6} \ldots$ diverges for $|x|>1$.

| a complex analytic |
| :--- | :--- | :--- |
| function |$\stackrel{\text { extend }}{ } \quad$| a real |
| :--- |
| function | analytic

The Radius of Convergence ≤ 1

$$
\begin{array}{ll}
f(x)=1-x^{2}+x^{4}-x^{6}+\cdots+(-1)^{n} x^{2 n}+\cdots & \begin{array}{l}
\text { Differentiable everywhere in the } \\
\text { real line }
\end{array} \\
f(x) \Leftrightarrow \frac{1}{1+x^{2}} \quad \text { Converge when } \quad|x|<1 & \begin{array}{l}
\text { Differentiable at } 0 \text { and at every } \\
\text { point in an open set }(-1,+1)
\end{array}
\end{array}
$$

$$
\begin{aligned}
f(z)= & 1-z^{2}+z^{4}-z^{6}+\cdots+(-1)^{n} z^{2 n}+\cdots \\
& \text { entire function }
\end{aligned} \quad \begin{aligned}
& \text { Differentiable everywhere in the } \\
& \text { complex plane }
\end{aligned}
$$

$$
\begin{array}{rll}
f(z) & \frac{1}{1+z^{2}} & \text { Converge when } \\
& |z|<1 & \begin{array}{l}
\text { Differentiable at } 0 \text { and at every } \\
\text { point in an open set a ball of radius }
\end{array} \\
& \begin{array}{l}
\leq 1
\end{array} \\
& \text { rational function }
\end{array} \quad|z|<R, \quad R \leq 1 .
$$

The Radius of Convergence > 1

$$
\begin{aligned}
& f(z)=1-z^{2}+z^{4}-z^{6}+\cdots+(-1)^{n} z^{2 n}+\cdots \\
& f(z) \text { converges to } \frac{1}{1+z^{2}} \text { for }|z|<1 \\
& f(x)=1-x^{2}+x^{4}-x^{6}+\cdots+(-1)^{n} x^{2 n}+\cdots \\
& f(x) \text { converges to } \frac{1}{1+x^{2}} \text { for }|x|<1
\end{aligned}
$$

$f(z)=\sum_{n=0}^{\infty} a_{i}(z-1)^{i}$
complex
$f(z)$ converges to $\frac{1}{1+z^{2}}$ for $|z-1|<\sqrt{2}$
the radius of convergence

The distance from the center to the nearest isolated singularity

No corresponding case for real analytic function

Extending Real Analytic Functions

Any real analytic function on some open set on the real line can be extended to a complex analytic function on some open set of the complex plane.

However, not every real analytic function defined on the whole real line can be extended to a complex analytic defined on the whole complex plane.
$f(x)=1-x^{2}+x^{4}-x$.. is a counterexample, as it is not defined for $x= \pm i$.

```
a complex analytic extend a real analytic
function
function
```


Examples of Complex Analytic Functions

$$
\left|1-z^{2}+z^{4}-z^{6}+z^{8}-z^{10}+z^{12}-z^{14}\right|
$$

$$
\arg \left(1-z^{2}+z^{4}-z^{6}+z^{8}-z^{10}+z^{12}-z^{14}\right)
$$

Analyticity and Differentiability

Any real analytic function \longrightarrow| Infinitely differentiable |
| :--- |
| Smooth |

There exist a non-analytic smooth function

Any complex analytic function	\longrightarrow	Infinitely differentiable Smooth
Any complex analytic function	\longrightarrow	Any differentiable function in an open set

Any complex analytic function
$\bar{\Longrightarrow}$ Any complex holomorphic function

Other Definitions of Analyticity

A function $f(z)$ is analytic (or regular or holomorphic or monogenic) in a region if it has a (unique) derivative at every point of the region.

The statement $f(z)$ is analytic at a point $z=z_{\text {, }}$ means that $f(z)$ has a derivative at every point inside some small circle about $z=z_{0}$.

Isolated points and curves are not regions; a region must be two dimensional
M. L. Boas, "Mathematical methods in the physical sciences"

A function $f(z)$ is said to be analvtic in a domain D
if $f(z)$ is defined and differentiable at all points of D.
The function $f(z)$ is said to be analvtic at a point $z=z 0$ in D if $f(z)$ is analytic in a neighborhood of $z 0$.

Also, by an analytic function we mean a function that is analytic in some domain
E. Kreyszig, "Advanced Engineering Mathematics"

General Definitions of Analyticity

A function that is locally given by a convergent power series.

A function is analytic if and only if its Taylor series about x_{0} converges to the function in some neighborhood for every x_{0} in its domain.
real analytic functions $\quad \Rightarrow$ infinitely differentiable
complex analytic functions \Rightarrow infinitely differentiable

Complex analytic functions exhibit properties that do not hold generally for real analytic functions.

Complex Analytic Functions

$$
f^{\prime}(z)=\frac{d f}{d z}=\lim _{\Delta z \rightarrow 0} \frac{\Delta f}{\Delta z} \quad \begin{aligned}
& \Delta f=f(z+\Delta z)-f(z) \\
& \Delta z=\Delta x+i \Delta y
\end{aligned}
$$

complex differentiable
$f(z)$: analytic
in a region
$\Rightarrow f(z)$ has a (unique) derivative at every point of the region
$f(z)$: analytic
at a point $z=a$
$\Rightarrow f(z)$ has a (unique) derivative at every point of some small circle about $z=a$

Singular Point

Regular point of $f(z)$

$$
\xlongequal{\triangle} \quad \begin{gathered}
\text { a point at which } \\
f(z) \text { is analytic }
\end{gathered}
$$

Singular point of $f(z)$ \square a point at which

Isolated Singular point of $f(z)$

$$
f(z) \text { is not analytic }
$$

$\triangle \quad$ a point at which
$f(z)$ is analytic
everywhere else
inside some small circle about the singular point

Isolated Singularity

Isolated Singularity of $f(z)$ z=z0

If $\mathrm{z}=\mathrm{zO}$ has a neighborhood without further singularities of f(z)

There exists some deleted neighborhood or punctured open disk of z0 throughout which $f(z)$ is analytic

$$
0<\left|z-z_{0}\right|<R
$$

$\tan (z)$	$\pm \pi / 2, \pm 3 \pi / 2, \cdots$	Isolated Singularity
$\tan (1 / z)$	0	Non-isolated Singularity

Non-isolated Singularity

Cluster points: limit points of isolated singularities. If they are all poles, despite admitting Laurent series expansions on each of them, no such expansion is possible at its limit
$f(z)=\tan (1 / z)$
simple poles
$\quad \lim _{n \rightarrow 0} z_{n}=0$

$$
z_{n}=\frac{1}{(\pi / 2+n \pi)}
$$

Every punctured disk centered at 0 has an infinite number of singularities. No Laurent expansion

Natural boundaries: non-isolated set (e.g. a curve) which functions can not be analytically continued around (or outside them if they are closed curves in the Riemann sphere).
$f(z)=\operatorname{Ln} z$
the branch point 0
and the negative axis
Every neighborhood of z0 contains at least one singularity of $f(z)$ other than z0

Being analytic means (1)

$$
f(z)=u(x, y)+i v(x, y)
$$

: differentiable at a point

$$
z=x+i y
$$

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=+\frac{\partial v}{\partial y} \\
& \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}
\end{aligned}
$$

Δz can approach zero
from any convenient direction
z_{0}
Necessary condition for analyticity
a unique derivative

$$
f(z)=u(x, y)+i v(x, y) \quad f(z)=u(x, y)+i v(x, y)
$$

Being analytic means (2)

$$
f(z)=u(x, y)+i v(x, y): \text { differentiable at a point } \quad z=x+i y
$$

$\Rightarrow f^{\prime}(z)$ exists

$$
\begin{aligned}
f^{\prime}(z) & =\lim _{\Delta x \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z} \quad \Delta z=\Delta x+i \Delta y \\
& =\lim _{\Delta z \rightarrow 0} \frac{u(x+\Delta x, y+\Delta y)+i v(x+\Delta x, y+\Delta y)-u(x, y)-i v(x, y)}{\Delta z}
\end{aligned}
$$

Being analytic means (3)

horizontal approach $\Delta z \rightarrow 0 \rightarrow \Delta x \rightarrow 0 \Delta \Delta=0$

$$
\begin{aligned}
f^{\prime}(z) & =\lim _{\Delta x \rightarrow 0} \frac{u(x+\Delta x, y+\Delta y)+i v(x+\Delta x, y+\Delta y)-u(x, y)-i v(x, y)}{\Delta z} \\
& =\lim _{\Delta z \rightarrow 0} \frac{u(x+\Delta x, y)-u(x, y)}{\Delta x}+i \frac{v(x+\Delta x, y)-v(x, y)}{\Delta x} \\
& =\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=\frac{\partial f}{\partial x}
\end{aligned}
$$

vertical approach $\Delta z \rightarrow 0 \Rightarrow \Delta y \rightarrow 0 \Delta x=0$

$$
\begin{aligned}
f^{\prime}(z) & =\lim _{\Delta z \rightarrow 0} \frac{u(x+\Delta x, y+\Delta y)+i v(x+\Delta x, y+\Delta y)-u(x, y)-i v(x, y)}{\Delta z} \\
& =\lim _{\Delta x \rightarrow 0} \frac{u(x, y+\Delta y)-u(x, y)}{i \Delta y}+i \frac{v(x, y+\Delta y)-v(x, y)}{i \Delta y} \\
& =-i \frac{\partial u}{\partial y}+\frac{\partial v}{\partial y}=-i \frac{\partial f}{\partial y}
\end{aligned}
$$

Being analytic means (4)

horizontal approach $\Delta z \rightarrow 0 \rightleftarrows \Delta x \rightarrow 0 \Delta y=0$

$$
f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=\frac{\partial f}{\partial x}
$$

vertical approach $\Delta z \rightarrow 0 \rightarrow \Delta y \rightarrow 0 \Delta x=0$

$$
f^{\prime}(z)=-i \frac{\partial u}{\partial y}+\frac{\partial v}{\partial y}=-i \frac{\partial f}{\partial y}
$$

$$
f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=-i \frac{\partial u}{\partial y}+\frac{\partial v}{\partial y}
$$

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}
$$

$$
\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}
$$

Cauchy-Riemann equations

Being analytic means (5)

$$
f(z)=u(x, y)+i v(x, y): \text { analytic in a region } \mathrm{R}
$$

derivatives of all orders at points inside region

$$
f^{\prime}\left(z_{0}\right), f^{\prime \prime}\left(z_{0}\right), f^{(3)}\left(z_{0}\right), f^{(4)}\left(z_{0}\right), f^{(5)}\left(z_{0}\right), \cdots
$$

Infinitely differentiable

Smooth

Taylor series expansion about any point z_{0} inside the region

The power series converges inside the circle about z_{0}

This circle extends to the nearest singular point

A function that is locally given by a convergent power series.

Being analytic means (6)

$$
f(z)=u(x, y)+i v(x, y): \text { analytic in a region } \mathrm{R}
$$

$$
\Rightarrow \quad \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

satisfy Laplace's equation in the region harmonic functions

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad \begin{aligned}
& \text { satisfy Laplace's equation in } \\
& \text { simply connected region }
\end{aligned}
$$

$$
u(x, y), v(x, y)
$$

real and imaginary part of an analytic function $f(z)$

The necessary and sufficient conditions

$$
\begin{gathered}
f(z)=u(x, y)+i v(x, y): \text { analytic in a domain D } \\
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}
\end{gathered}
$$

$$
f(z)=u(x, y)+i v(x, y): \text { analytic in a domain } \mathrm{D}
$$

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}
$$

$$
\begin{array}{ll}
u(x, y), v(x, y) & : \text { continuous on in a domain D } \\
\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y} & \text { : continuous on in a domain D }
\end{array}
$$

To Be Analytic (1)

if the real functions $u(x, y)$ and $v(x, y)$ are continuous and have continuous first order partial derivatives
in a neighborhood of z, and if $u(x, y)$ and $v(x, y)$ satisfy the Cauchy-Riemann equations at the point z,
then the complex function $f(z)=u(x, y)+i v(x, y)$
is differentiable at z
and $f^{\prime}(z)$ is as belows.

$$
f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y}
$$

References

[1] http://en.wikipedia.org/
[2] http://planetmath.org/
[3] M.L. Boas, "Mathematical Methods in the Physical Sciences"
[4] E. Kreyszig, "Advanced Engineering Mathematics"
[5] D. G. Zill, W. S. Wright, "Advanced Engineering Mathematics"

